五年级数学下册第四单元知识点
五年级数学下册第四单元知识点
在我们的学习时代,很多人都经常追着老师们要知识点吧,知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。那么,都有哪些知识点呢?以下是小编收集整理的五年级数学下册第四单元知识点,欢迎阅读,希望大家能够喜欢。
五年级数学下册第四单元知识点 1
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
五年级数学下册第四单元知识点 2
第一课时分数的产生、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”,也叫整体“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数。
4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
6、一个分数的分母是几,它的分数单位就是几分之;分子是几,它就有几个这样的分数单位。
第二课时分数与除法
1、分数与除法的关系:被除数÷除数=被除数/除数,用字母表示为a÷b=a/b (b≠0)
2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数=一个数是另一个数的几分之几(或几倍)。
(二)真分数和假分数
1、真分数的意义;分子比分母小的分数叫做真分数。
2、真分数的特征:真分数小于1。
3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。
4、假分数的特征:假分数大于1或等于。
5、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。带分数的读法:先读整数部分,再读分数部分,中间加上一个“又”字。带分数的写法:先写整数部分,再写分数部分,分数部分的分数与整数的中间对齐。
6、把假分数化成整数或带分数,根据分数与除法的关系,用分子除以分母:
(1)如果能整除,那么商就是所要化成的整数。
(2)如果能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。
(三)分数的基本性质
1、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的'基本性质。
2、利用分数的基本性质,可以把分母不同的分数化成分母相同的分数,还可以把一个分数化为指定分母的分数。
(四)约分
第一课时最大公因数
1、几个数共有的因数叫做这几个数的公因数;其中最大的那个公因数叫做这几个数的最大公因数。
2、求两个数的最大公因数的方法:
(1)列举法:先分别找出两个数的因数,再从中找出公因数,最后找出最大的一个;
(2)筛选法:先找出两个数中较小的因数,再从中圈出另一个数的因数,最后看圈出另一个数的因数,最后看圈出的因数中哪一个最大。
3、解决地砖的边长及最大边长是多少这类问题,实际上就是求两个数的公因数和最大公因数。
第二课时约分
1、约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
2、约分的方法:
(1)逐次约分法:用分子和分母的公因数(1除外)依次去除分子和分母,除到分子和分母的公因数只有1为止。
(2)一次约分法:用分子和分母的最大公因数去除分子和分母。
3、分子和分母只有公因数1的分数叫做最简分数。
(五)通分
第一课时最小公倍数
1、几个数公有的倍数,叫做这几个数的公倍数。其中,最小的一个公倍数叫做这几个数的最小公倍数。
2、求两个数的最小公倍数的方法;
(1)列举法:先分别找出两个数各自的`倍数,再找出这两个数的公倍数和最小公倍数;
(2)筛选法:先写出两个数中叫大数的倍数,再按照从小到大的顺序圈出叫小数的倍数,圈出的第一个数就是它们的最小公倍数。
第二课时通分
1、分母相同、分子不同的两个分数,分子大的分数就大。
2、分子相同分母不同的两个分数,分母小的分数反而较大。
3、通分:把异分母分数化成和原来分数相等的同分母分数。
4、通分的方法:同分时,用原分母的公倍数作公分母,为了计算简便,通常选用原分母的最小公倍数作公分母,然后把每个分数都化成用这个最小公倍数作分母的分数。
(六)分数和小数的互化
1、小数化成分数的方法:小数表示的就是十分之几、百分之几、千分之几…….的数,所以可以直接写成分母是10,100,1000,…….的分数。原来是几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约成最简分数。
2、分数化成小数的方法:
(1)分母不是10,100,1000,…的分数化成小数,可以直接去掉分母,看1后面有几个0,就从分子的右边起向左数出几位,点上小数点,位数不够时,用0补足。
(2)分母不是10,100,1000,…的分数化成小数,根据分数与除法的关系,用分子除以分母,除不尽时按“四舍五入”法保留几位小数。
数学两位数乘两位数速算绝招
(A)60×20=『』,把60×20看作60乘2,得120,20是2的10倍,再将得数扩大10倍得1200,心算过程是60×2=120,2的后面有一个0,积120后面加一个0,得1200.
(B)估算时,把一个两位数看成是整十数进行估算,如39×40,把39看成40,40×40=1600,39×40~1600.51×30=『』,估算过程是50×30=1500,51×30~1500.
(C)35×11+『』,把35乘10得350,再用35×1=35,350+35=385,心算过程是:35×11=350+35=385,又如43×11=430+43=473.
(D)23×19=『』,把19看作20来乘,多乘龙1个23,再减去23,心算过程是:23×20-23=460-23=437,如45×21=『』,把21看作20来乘,少乘1个45,再加上45,45×20+45=900+45=945.
(E)34×15=『』,把34×10后再加34×5,因为34×5=34×10 / 2=340 / 2=170,所以34×15的心算过程是:340+340 / 2=340+170=510.
学数学三角形的体积公式
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
三角形计算公式
1、两边之和大于第三边,两边之差小于第三边。
2、大角对大边。
3、周长c=三边之和a+b+c
4、面积:
s=1/2ah(底x高/2)
s=1/2absinC(两边与夹角正弦乘积的一半)
s=1/2acsinB
s=1/2bcsinA
5、正弦定理:
sinA/a=sinB/b=sinc/C
6、余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosA
五年级数学下册第四单元知识点 3
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<>
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.
4、真分数<1≤假分数
真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:
(2)整数化为假分数,用整数乘以分母得分子如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/10 0.03=3/100 0.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:3/10=0.3 3/5=6/10=0.6
1/4=25/100=0.25
方法二:用分子÷分母
如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
1/2=0.5 1/4=0.25 3/4=0.75
1/5=0.2 2/5=0.4 3/5=0.6
4/5=0.8
1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是1
③一般关系:从大到小看较小数的因数是否是较大数的因数。
如何提高数学成绩
认真听讲的
这里的听"讲",应包括两方面的意思:一是指在课堂上,精力要集中,不做与学习无关的动作,要认真倾听老师的点拨、指导,要抓住新知识的生长点,新旧知识的联系,弄清公式、法则的来龙去脉。二是说要认真地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。
认真审题
审题是正确解题的前提,养成认真审题的习惯,不但是提高学习成绩的保障,而且能使孩子从小就具有做事细心、踏实的品性。
认真计算
计算是小学生数学学习中最基本的技能。一个从小就能慎重对待计算的人,在以后的行事中就不会轻易犯下草率从事的错误。所以,家长要训练孩子沉着、冷静的学习态度。不管题目难易都要认真对待。对于孩子认真计算有进步的时候要给予鼓励表扬,及时树立自信心。
检验改错
在数学知识的探索中,有错误是难免的,正如在人生的旅程中,总是难免有各式各样的错误。因此,检验改错的习惯正是孩子必不可少的一个发展性学习习惯。由此,在日常练习中应把检查和验算当作不可缺少的的步骤,养成检验的好习惯。
数学统计知识点
(一)简单的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。
(二)求平均数用移多补少的方法:
平均数=总数量/总份数
总数量=平均数×总份数
总份数=总数量/平均数
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除