初二数学实数知识点总结3篇

初二数学实数知识点总结1

  1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。

  2、无理数的表现形式

  在初中阶段,无理数的表现形式有几下三种:

  ①开方开不尽而得到的数,如、、等

  ②含有π的数,如π、等

  ③无限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)

  二、实数的分类

  有理数、无理数统称实数;它可以按以下两种方式分类

  实数或实数

  三、实数的重要性质

  1、有理数范围内的一些定义,概念和性质在实数范围内仍然适用,如绝对值、相反数、倒数等。

  2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小

  3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行开方运算,负实数只能开立方,不能开*方,

  4、在有理数范围内的运算顺序和运算律在实数范围内仍然适用。

  四、实数和数轴的关系

  实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个无理数用数轴上的点表示出来。


初二数学实数知识点总结3篇扩展阅读


初二数学实数知识点总结3篇(扩展1)

——数学实数知识点3篇

数学实数知识点1

  实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

  1、实数的分类:有理数和无理数

  2、数轴:规定了原点、正方向和单位长度的直线叫数轴。实数和数轴上点一一对应。

  3、相反数:符号不同的两个数,叫做互为相反数。a的相反数是-a,0的相反数是0。(若a与b护卫相反数,则a+b=0)

  4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

  5、倒数:乘积为1的两个数

  6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。(*方和立方)

  7、*方根:一般地,如果一个数x的*方等于a,即x2=a那么这个数x就叫做a的*方根(也叫做二次方根)。一个正数有两个*方根,它们互为相反数;0只有一个*方根,它是0本身;负数没有*方根。(算术*方根:一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x就叫做a的算术*方根,0的算术*方根是0。)

数学实数知识点2

  1.数的分类及概念数系表:

  说明:分类的原则:

  1)相称(不重、不漏)

  2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aC.0

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:xxxx

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要***││出现,其关键一步是去掉││符号。

数学实数知识点3

  无理数:无限不循环小数叫无理数

  *方根

  ①如果一个正数X的*方等于A,那么这个正数X就叫做A的算术*方根。

  ②如果一个数X的*方等于A,那么这个数X就叫做A的*方根。

  ③一个正数有2个*方根/0的*方根为0/负数没有*方根。

  ④求一个数A的*方根运算,叫做开*方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  代数式

  单独一个数或者一个字母也是代数式。

  合并同类项:

  ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水*直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。


初二数学实数知识点总结3篇(扩展2)

——初二数学实数知识点3篇

初二数学实数知识点1

  无理数:无限不循环小数叫无理数

  *方根:①如果一个正数X的*方等于A,那么这个正数X就叫做A的算术*方根。②如果一个数X的*方等于A,那么这个数X就叫做A的*方根。③一个正数有2个*方根/0的*方根为0/负数没有*方根。④求一个数A的*方根运算,叫做开*方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。


初二数学实数知识点总结3篇(扩展3)

——初二数学全部知识点总结3篇

初二数学全部知识点总结1

  初二上册知识点

  第一章 一次函数

  1 函数的定义,函数的定义域、值域、表达式,函数的图像

  2 一次函数和正比例函数,包括他们的表达式、增减性、图像

  3 从函数的观点看方程、方程组和不等式

  第二章 数据的描述

  1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

  条形图特点:

  (1)能够显示出每组中的具体数据;

  (2)易于比较数据间的差别

  扇形图的特点:

  (1)用扇形的面积来表示部分在总体中所占的百分比;

  (2)易于显示每组数据相对与总数的大小

  折线图的特点;

  易于显示数据的变化趋势

  直方图的特点:

  (1)能够显示各组频数分布的情况;

  (2)易于显示各组之间频数的差别

  2 会用各种统计图表示出一些实际的问题

  第三章 全等三角形

  1 全等三角形的性质:

  全等三角形的对应边、对应角相等

  2 全等三角形的判定

  边边边、边角边、角边角、角角边、直角三角形的HL定理

  3 角*分线的性质

  角*分线上的点到角的两边的距离相等;

  到角的两边距离相等的点在角的*分线上.

  第四章 轴对称

  1 轴对称图形和关于直线对称的两个图形

  2 轴对称的性质

  轴对称图形的对称轴是任何一对对应点所连线段的垂直*分线;

  如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直*分线;

  线段垂直*分线上的点到线段两个端点的距离相等;

  到线段两个端点距离相等的点在这条线段的垂直*分线上

  3 用坐标表示轴对称

  点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

  4 等腰三角形

  等腰三角形的两个底角相等;(等边对等角)

  等腰三角形的顶角*分线、底边上的中线、底边上的高线互相重合;(三线合一)

  一个三角形的两个相等的角所对的边也相等.(等角对等边)

  5 等边三角形的性质和判定

  等边三角形的三个内角都相等,都等于60度;

  三个角都相等的三角形是等边三角形;

  有一个角是60度的等腰三角形是等边三角形;

  推论:

  直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

  在三角形中,大角对大边,大边对大角.

  第五章 整式

  1 整式定义、同类项及其合并

  2 整式的加减

  3 整式的乘法

  (1)同底数幂的乘法:

  (2)幂的乘方

  (3)积的乘方

  (4)整式的乘法

  4 乘法公式

  (1)*方差公式

  (2)完全*方公式

  5 整式的除法

  (1)同底数幂的除法

  (2)整式的除法

  6 因式分解

  (1)提共因式法

  (2)公式法

  (3)十字相乘法

  初二下册知识点

  第一章 分式

  1 分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2 分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

  (2) 分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3 整数指数幂的加减乘除法

  4 分式方程及其解法

  第二章 反比例函数

  1 反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2 反比例函数在实际问题中的应用

  第三章 勾股定理

  1 勾股定理:直角三角形的两个直角边的*方和等于斜边的*方

  2 勾股定理的逆定理:如果一个三角形中,有两个边的*方和等于第三条边的*方,那么这个三角形是直角三角形.

  第四章 四边形

  1 *行四边形

  性质:对边相等;对角相等;对角线互相*分.

  判定:两组对边分别相等的四边形是*行四边形;

  两组对角分别相等的四边形是*行四边形;

  对角线互相*分的四边形是*行四边形;

  一组对边*行而且相等的四边形是*行四边形.

  推论:三角形的中位线*行第三边,并且等于第三边的一半.

  2 特殊的*行四边形:矩形、菱形、正方形

  (1) 矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有*行四边形的所有性质

  判定: 有一个角是直角的*行四边形是矩形;

  对角线相等的*行四边形是矩形;

  推论: 直角三角形斜边的中线等于斜边的一半.

  (2) 菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线*分一组对角;

  菱形具有*行四边形的一切性质

  判定:有一组邻边相等的*行四边形是菱形;

  对角线互相垂直的*行四边形是菱形;

  四边相等的四边形是菱形.

  (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形.

  第五章 数据的分析

  加权*均数、中位数、众数、极差、方差

初二数学全部知识点总结2

  一.定义

  1.一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

  2.一般地,如果一个数的*方等于a,那么这个数叫做a的*方根或二次方根,求一个数a的*方根的运算,叫做开*方.

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

  5.无限不循环小数又叫无理数.

  6.有理数和无理数统称实数.

  7.数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

  二.重点

  1.*方与开*方互为逆运算.

  2.正数的*方根有两个,它们互为相反数,其中正的*方根就是这个数的算术*方根.

  3.当被开方数的小数点向右每移动两位,它的算术*方根的小数点就向右移动一位.

  4.当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

  三.注意

  1.被开方数一定是非负数.

  2.0,1的算术*方根是它本身;0的*方根是0,负数没有*方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

初二数学全部知识点总结3

  一次函数

  (1)正比例函数:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数;

  (2)正比例函数图像特征:一些过原点的直线;

  (3)图像性质:

  ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

  (4)求正比例函数的解析式:已知一个非原点即可;

  (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

  (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

  (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

  (8)一次函数图像特征:一些直线;

  (9)性质:

  ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx*移|b|个单位长度而得;(当b>0,向上*移;当b<0,向下*移)

  ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

  ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

  (10)求一次函数的解析式:即要求k与b的值;

  (11)画一次函数的图像:已知两点;

  用函数观点看方程(组)与不等式

  (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

  (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

  (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

  (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;


初二数学实数知识点总结3篇(扩展4)

——初二数学基础知识点总结3篇

初二数学基础知识点总结1

  等腰三角形

  1. 性质:等腰三角形的两个底角相等(等边对等角).

  2. 判定:有两个角相等的三角形是等腰三角形(等角对等边).

  3. 推论:等腰三角形 、 、互相重合(即“ ”).

  4. 等边三角形的性质及判定定理

  性质定理:等边三角形的三个角都相等,并且每个角都等于 ;等边三角形是轴对称图形,有 条对称轴.

  判定定理:(1)有一个角是60°的等腰三角形是等边三角形;

  (2)三个角都相等的三角形是等边三角形.

  直角三角形

  1. 勾股定理及其逆定理

  定理:直角三角形的两条直角边的 等于 的*方.

  逆定理:如果三角形两边的*方和等于第三边的*方,那么这个三角形是 .

  2. 含30°的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30°,那么 等于 的一半.

  3.直角三角形斜边上的中线等于 的一半。

  要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的*方和等于斜边的*方”,应该说成“三角形两边的*方和等于第三边的*方”。

  ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

  线段的垂直*分线

  1. 线段垂直*分线的性质及判定

  性质:线段垂直*分线上的点到 的距离相等.

  判定:到一条线段两个端点距离相等的点在这条线段的 .

  2.三角形三边的垂直*分线的性质

  三角形三条边的垂直*分线相交于一点,并且这一点到三个顶点的距离相等。

  角*分线

  1. 角*分线的性质及判定定理

  性质:角*分线上的点到 的距离相等;

  判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的*分线上。

  2. 三角形三条角*分线的性质定理

  性质:三角形的三条角*分线相交于一点,并且这一点到三条边的距离相等。这个点叫内心。

初二数学基础知识点总结2

  第一章 勾股定理

  定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的*方和等于斜边的*方。

  判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。

  第二章 实数

  定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)

  一般地,如果一个正数x的*方等于a,那么这个正数x就叫做a的算术*方根。 特别地,我们规定0的算术*方根是0。

  一般地,如果一个数x的*方等于a,那么这个数x就叫做a的*方根(也叫二次方根) 一个正数有两个*方根;0只有一个*方根,它是0本身;负数没有*方根。 求一个数a的*方根的运算,叫做开*方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  第三章 图形的*移与旋转

  定义:在*面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为*移。*移不改变图形的形状和大小。

  经过*移,对应点所连的线段*行也相等;对应线段*行且相等,对应角相等。

  在*面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。

  任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  第四章 四边形性质探索

  定义:若两条直线互相*行,则其中一条直线**意两点到另一条直线的距离相等,这个距离称为*行线之间的距离。

  *行四边形: 两组对边分别*行的四边形.。 对边相等,对角相等,对角线互相*分。 两组对边分别*行的四边形是*行四边形,两组对边分别相等的四边形是*行四边形,两条对角线互相*分的四边形是*行四边形,一组对边*行且相等的四边形是*行四边形

  菱形 :一组邻边相等的*行四边形 (*行四边形的性质)。四条边都相等,两条对角线互相垂直*分,每一条对角线*分一组对角。 一组邻边相等的*行四边形是菱形,对角线互相垂直的*行四边形是菱形,四条边都相等的四边形是菱形。

  矩形: 有一个内角是直角的*行四边形 (*行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的*行四边形是矩形,对角线相等的*行四边形是矩形。

  正方形: 一组邻边相等的矩形。 正方形具有*行四边形、菱形、矩形的一切性质。 一组邻边相等的'矩形是正方形,一个内角是直角的菱形是正方形。

  梯形: 一组对边*行而另一组对边不*行的四边形。 一组对边*行而另一组对边不*行的四边形是梯形 。 等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形 。

  直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。

  多边形:在*面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180

  多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。

  定义:在*面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  中心对称图形上的每一对对应点所连成的线段都被对称中心*分。


初二数学实数知识点总结3篇(扩展5)

——初二数学知识点之轴对称3篇

初二数学知识点之轴对称1

  经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直*分线。

  轴对称图形的对称轴,是任何一对对应点所连接线段的垂直*分线。

  线段垂直*分线上的点与这条线段两个端点的距离相等。

  由一个*面图形得到它的轴对称图形叫做轴对称变换。

  等腰三角形的性质:

  等腰三角形的两个底角相等。(等边对等角)

  等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

  如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  有一个角是60°的等腰三角形是等边三角形。

  在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。


初二数学实数知识点总结3篇(扩展6)

——初二数学重要的知识点3篇

初二数学重要的知识点1

  实数

  一.定义

  1.一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

  2.一般地,如果一个数的*方等于a,那么这个数叫做a的*方根或二次方根,求一个数a的*方根的运算,叫做开*方.

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

  5.无限不循环小数又叫无理数.

  6.有理数和无理数统称实数.

  7.数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

  二.重点

  1.*方与开*方互为逆运算.

  2.正数的*方根有两个,它们互为相反数,其中正的*方根就是这个数的算术*方根.

  3.当被开方数的小数点向右每移动两位,它的算术*方根的小数点就向右移动一位.

  4.当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

  三.注意

  1.被开方数一定是非负数.

  2.0,1的算术*方根是它本身;0的*方根是0,负数没有*方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

初二数学重要的知识点2

  1.整式乘法

  (1).am·an=am+n[m,n都是正整数]

  同底数幂相乘,底数不变,指数相加.

  (2).(am)n=amn[m,n都是正整数]

  幂的乘方,底数不变,指数相乘.

  (3).(ab)n=anbn[n为正整数]

  积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

  (4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7

  单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

  (5).m(a+b+c)=ma+mb+mc

  单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,

  (6).(a+b)(m+n)=am+an+bm+bn

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.

  2.乘法公式

  (1).(a+b)(a-b)=a2-b2

  *方差公式:两个数的和与这两个数的差的积,等于这两个数的*方差.

  (2).(a±b)2=a2±2ab+b2

  完全*方公式:两数和[或差]的*方,等于它们的*方和,加[或减]它们积的2倍.

  3.整式除法

  (1)am÷an=am-n[a≠0,m,n都是正整数,且m>n]

  同底数幂相除,底数不变,指数相减.

  (2)a0=1[a≠0]

  任何不等于0的数的0次幂都等于1.

  (3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

  (4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  4.把一个多项式化成几个整式的积的.形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.


初二数学实数知识点总结3篇(扩展7)

——初二数学公式知识点总结3篇

初二数学公式知识点总结1

  三角*方差公式

  (sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)

  (cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)

  注意事项

  1、公式的左边是个两项式的积,有一项是完全相同的。

  2、右边的结果是乘式中两项的*方差,相同项的*方减去相反项的*方。

  3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。

  上述的公式是化积公式的一种,由于酷似*方差公式而得名,主要用于解三角形。

  *面直角坐标系:在*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。

  水*的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为*面直角坐标系的原点。

  *面直角坐标系的要素:①在同一*面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对*面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:*面直角坐标系的构成

  *面直角坐标系的构成

  在同一个*面上互相垂直且有公共原点的两条数轴构成*面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水*位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水*的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  点的坐标的性质

  建立了*面直角坐标系后,对于坐标系*面内的任何一点,我们可以确定它的'坐标。反过来,对于任何一个坐标,我们可以在坐标*面内确定它所表示的一个点。

  对于*面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初二数学公式知识点总结2

  乘法与因式分解a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b|

  |a-b||a|+|b|

  |a|=ab

  |a-b||a|-|b| -|a||a|

  一元二次方程的解 -b+(b2-4ac)/2a-b-(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a

  X1xX2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac0 注:方程有两个不等的实根

  b2-4ac0 注:方程没有实根,有共轭复数根

  某些数列前n项和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4

  1x2+2x3+3x4+4x5+5x6+6x7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R

  注:其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB

  注:角B是边a和边c的夹角

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除