高考重点数学知识点 (菁选5篇)
高考重点数学知识点1
(1)弄清楚自己的需要。例如拿到老师布置的作业,无论是试卷还是课本习题,如果带着情绪做,那么效果肯定不好。首先要弄清自己的需要,比如这些题目中哪些题目质量好?哪些是你还没有弄懂的?哪些是以前常出现的.?哪些是你肯定会做的等等,你最想解决哪题?
(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获。
(3)对于学生来说,资源很多,例如说学校的老师、同学、资料等等。但是利用资源之前要做到明白什么是你需要的资源?打算怎样去利用资源等等。
高考数学复习方法
抓好专题复习,领会数学思想
高考数学第二轮复习重在知识和方法专题的复习。在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识板块的综合。尤其注意知识的交叉点和结合点,进行必要的针对性专题复习。例如:1).函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
2).三角函数、*面向量和解三角形。此专题中*面向量和三角函数的图像与性质,恒等变换是重点。
3).数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练等。
抓规范训练,提高解题速度与准确率
【1】加强思维训练,规范答题过程
解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学**惯,务必将解题过程写得层次分明结构完整。
【2】加强客观题的解题速度和正确率的强化训练
选择、填空题都是客观试题,它的特点是:概念性强、量化突出、充满思辨性、形数皆备、解法多样形、题量大,分值高,实现对“三基”的考查。每次小题训练应不断强化自己选择题的解法,如特值法、数形结合等,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。通过训练,要达到这样一个目的:大部分同学都能在45分钟以内完成十道选择题和五道填空题,并且失误**在两题之内。
高考重点数学知识点2
一、直线方程.
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴*行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组*行直线.
3. ⑴两条直线*行:
∥两条直线*行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是*行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.
特例:点P(x,y)到原点O的距离:
2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则
特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤<180°)、斜率:
4. 过两点.
当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率
⑵两条*行线间的距离公式:设两条*行直线,它们之间的距离为,则有.
注;直线系方程
1. 与直线:Ax+By+C= 0*行的直线系方程是:Ax+By+m=0.( m?R, C≠m).
2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)
3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)
4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是*行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线*行,则对称直线也*行,且两直线到对称直线距离相等.
若两条直线不*行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角*分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
高考重点数学知识点3
1.进行集合的交、并、补运算时,不要忘了全集和空集这两种特殊情况,不要忘记了借助数轴和维恩图进行求解
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别吗?
6.求解与函数有关的问题易忽略定义域优先的原则
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称这一点
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判**)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”.
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是?
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的*移,方程的*移以及点的*移公式易混:
(1)函数的图象的*移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.
(2)方程表示的图形的*移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.
(3)点的*移公式:点P(x,y)按向量*移到点P'(x',y'),则x=x'+hy'=y+k.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.正弦定理时易忘比值还等于2R.
高考重点数学知识点4
第一、高考数学中有函数、数列、三角函数、*面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、*面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是**事件,还有**重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是20xx年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高考重点数学知识点5
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。**的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与*面向量
一般是2道小题,1道综合解答题。小题一道考查*面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查*面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查*面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的'概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面*行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与*面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.
高考数学学习方法
1.先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水*。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。
高考重点数学知识点 (菁选5篇)扩展阅读
高考重点数学知识点 (菁选5篇)(扩展1)
——高一重点数学知识点整理5篇
高一重点数学知识点整理1
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像**意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1**意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
高一重点数学知识点整理2
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水*直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数*。
高一重点数学知识点整理3
集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
高一重点数学知识点整理4
立体几何初步
柱、锥、台、球的结构特征
棱柱
定义:有两个面互相*行,其余各面都是四边形,且每相邻两个四边形的公共边都互相*行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边*行的全等多边形;侧面、对角面都是*行四边形;侧棱*行且相等;*行于底面的截面是与底面全等的多边形。
棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;*行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的*方。
棱台
定义:用一个*行于棱锥底面的*面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的*行多边形②侧面是梯形③侧棱交于原棱锥的顶点
圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴*行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台
定义:用一个*行于圆锥底面的*面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面**意一点到球心的距离等于半径。
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a—边长,S=6a2,V=a3
4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc
5、棱柱S—h—高V=Sh
6、棱锥S—h—高V=Sh/3
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3
8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6
9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)
11、r—底半径h—高V=πr^2h/3
12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6
14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6
16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高一重点数学知识点整理5
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像**意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1**意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
高考重点数学知识点 (菁选5篇)(扩展2)
——高考数学重点知识点5篇
高考数学重点知识点1
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的'思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
高考数学重点知识点2
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的.方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的*行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
高考数学重点知识点3
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的`关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高考数学重点知识点4
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的.等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高考数学重点知识点5
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
二、充分条件、必要条件的常用判断法
1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A?B,则p是q的充分条件。
若A?B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A?B,且B?A,则p是q的既不充分也不必要条件。
三、知识扩展
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高考重点数学知识点 (菁选5篇)(扩展3)
——初一重点数学知识点3篇
初一重点数学知识点1
1、边:两组对边分别*行;四条边都相等;相邻边互相垂直。
2、内角:四个角都是90°;
3、对角线:对角线互相垂直;对角线相等且互相*分;每条对角线*分一组对角;
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
5、正方形具有*行四边形、菱形、矩形的一切性质。
6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。
高考重点数学知识点 (菁选5篇)(扩展4)
——高考数学知识点总结归纳5篇
高考数学知识点总结归纳1
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d。
3.等差中项
如果A=(a+b)/2,那么A叫做a与b的等差中项。
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N.)。
(2)若{an}为等差数列,且m+n=p+q,
则am+an=ap+aq(m,n,p,q∈N.)。
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N.)是公差为md的等差数列。
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。
(5)S2n-1=(2n-1)an。
(6)若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中(中间项)。
注意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元。
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。
四种方法
等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N.)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。
高考数学知识点总结归纳2
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。
高考数学知识点总结归纳3
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内*移直线,求出目标函数的最值。
不看后悔!清华名师**学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——*面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的`基本素养之一啊.
(3)采用灵活的教学**,与时俱进。
利用多种技术**,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被*面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
高考数学知识点总结归纳4
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。**的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与*面向量
一般是2道小题,1道综合解答题。小题一道考查*面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查*面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查*面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面*行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考数学知识点总结归纳5
一、准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题
概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)、确定性:集合中的元素应该是确定的,不能模棱两可。
(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。
(3)、无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭 集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的****。
高考重点数学知识点 (菁选5篇)(扩展5)
——初三数学知识点 (菁选5篇)
初三数学知识点1
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径*分弦,并且*方弦所对的两条弧;
*分弦的直径垂直弦,并且*分弦所对的两条弧。
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5点和圆的位置关系
点在圆外
点在圆上d=r
点在圆内d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直*分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交d
相切d=r
相离d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线*分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角*分线的交点,为三角形的内心。
7圆和圆的位置关系
外离d>R+r
外切d=R+r
相交R-r
内切d=R-r
内含d
8正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9弧长和扇形面积
弧长
扇形面积:
10圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章概率初步
1概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。
2用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3用频率去估计概率
初三数学知识点2
二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴*行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
顶点式
y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)
初三数学知识点3
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点2:*行线分线段成比例定理、三角形一边的*行线的有关定理
考核要求:理解并利用*行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定*行的一边不可以作为条件中的对应线段成比例使用.
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.
考点5:三角形的重心
考核要求:知道重心的定义并初步应用.
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
二、锐角三角比(2个考点)
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考点9:解直角三角形及其应用
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.
三、二次函数(4个考点)
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.
考点11:用待定系数法求二次函数的解析式
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.
注意求函数解析式的步骤:一设、二代、三列、四还原.
考点12:画二次函数的图像
考核要求:(1)知道函数图像的意义,会在*面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.
考点13:二次函数的图像及其基本性质
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.
注意:(1)解题时要数形结合;(2)二次函数的*移要化成顶点式.
四、圆的相关概念(6个考点)
考点14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.
考点15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.
考点16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一.
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.
考点18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.
考点19:画正三、四、六边形.
考核要求:能用基本作图工具,正确作出正三、四、六边形.
初三数学知识点4
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;
(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。
k≠0
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质:
y=k/x(k≠0)的变形形式为xy=k(常数)所以:
(1)其图象的位置是:
当k﹥0时,x、y同号,图象在第一、三象限;
当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;
当k﹤0时,在每个象限内,y随x的增大而增大;
初三数学知识点5
知识点1: 一元二次方程的基本概念 1. 一元二次方程 3x2+5x-2=0 的常数项是-2. 2. 一元二次方程 3x2+4x-2=0 的一次项系数为 4,常数项是-2. 3. 一元二次方程 3x2-5x-7=0 的二次项系数为 3, 常数项是-7. 4. 把方程 3x(x-1)-2=-4x 化为一般式为 3x2-x-2=0.
知识点2: 直角坐标系与点的位置 1. 直角坐标系中, 点 A(3, 0) 在 y 轴上。 2. 直角坐标系中, x 轴上的任意点的横坐标为 0. 3. 直角坐标系中, 点 A(1, 1) 在第一象限. 4. 直角坐标系中, 点 A(-2, 3) 在第四象限. 5. 直角坐标系中, 点 A(-2, 1) 在第二象限.
知识点3: 已知自变量的值求函数值 1. 当 x=2 时,函数 y=32 ?6?1x的值为 1. 2. 当 x=3 时,函数 y=21?6?1x的值为 1. 3. 当 x=-1 时,函数 y=321?6?1x的值为 1.
知识点4: 基本函数的概念及性质 1. 函数 y=-8x 是一次函数. 2. 函数 y=4x+1 是正比例函数. 1?6?1=3. 函数xy2是反比例函数. 4. 抛物线 y=-3(x-2)2-5 的开口向下. 5. 抛物线 y=4(x-3)2-10 的对称轴是 x=3. 1?6?1=xy6. 抛物线2) 1(22+的顶点坐标是(1,2). 7. 反比例函数xy2=的图象在第一、 三象限.
知识点5: 数据的*均数中位数与众数 1. 数据 13,10,12,8,7 的*均数是 10. 2. 数据 3,4,2,4,4 的众数是 4. 3. 数据 1, 2, 3, 4, 5 的中位数是 3.
知识点6: 特殊三角函数值
知识点7: 圆的基本性质 1. 半圆或直径所对的圆周角是直角. 2. 任意一个三角形一定有一个外接圆. 3. 在同一*面内, 到定点的距离等于定长的点的轨迹,是以定点为圆心, 定长为半径的圆. 4. 在同圆或等圆中, 相等的圆心角所对的弧相等. 5. 同弧所对的圆周角等于圆心角的一半. 6. 同圆或等圆的半径相等. 7. 过三个点一定可以作一个圆. 8. 长度相等的两条弧是等弧. 9. 在同圆或等圆中, 相等的圆心角所对的弧相等. 10. 经过圆心*分弦的直径垂直于弦。
知识点8: 直线与圆的位置关系 1. 直线与圆有唯一公共点时,叫做直线与圆相切. 2. 三角形的外接圆的圆心叫做三角形的外心. 3. 弦切角等于所夹的弧所对的圆心角. 4. 三角形的内切圆的圆心叫做三角形的内心. 5. 垂直于半径的直线必为圆的切线. 6. 过半径的外端点并且垂直于半径的直线是圆的切线. 7. 垂直于半径的直线是圆的切线. 8. 圆的切线垂直于过切点的半径.
知识点9: 圆与圆的位置关系 1. 两个圆有且只有一个公共点时,叫做这两个圆外切. 2. 相交两圆的连心线垂直*分公共弦. 3. 两个圆有两个公共点时,叫做这两个圆相交. 4. 两个圆内切时,这两个圆的公切线只有一条. 5. 相切两圆的连心线必过切点.
知识点10: 正多边形基本性质 1. 正六边形的中心角为 60° . 2. 矩形是正多边形. 3. 正多边形都是轴对称图形. 4. 正多边形都是中心对称图形.
高考重点数学知识点 (菁选5篇)(扩展6)
——高考文科数学知识点 (菁选3篇)
高考文科数学知识点1
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、**性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面*行垂直;面与面*行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的.单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的热点;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
高考文科数学知识点2
1.对于集合,一定要抓住集合的**元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
2.你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
3.命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
3.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
4.函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
3.注意下列性质:
(3)德摩根定律:
高考文科数学知识点3
一、综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究*面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考文科数学知识点:不等式
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4.证明不等式的`方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
高考重点数学知识点 (菁选5篇)(扩展7)
——高考数学知识点总结 (荟萃20篇)
高考数学知识点总结1
一、集合与函数
1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2、在应用条件时,易A忽略是空集的情况
3、你会用补集的思想解决有关问题吗?
4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5、你知道“否命题”与“命题的否定形式”的区别。
6、求解与函数有关的问题易忽略定义域优先的原则。
7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9、原函数在区间[—a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判**)和导数法
11、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12、求函数的值域必须先求函数的定义域。
13、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
14、解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
18、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
19、绝对值不等式的解法及其几何意义是什么?
20、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
22、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
23、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。
三、数列
24、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
29、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)
33、反正弦、反余弦、反正切函数的取值范围分别是
34、你还记得某些特殊角的三角函数值吗?
35、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36、函数的图象的*移,方程的*移以及点的*移公式易混:
(1)函数的图象的*移为“左+右—,上+下—”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即。
(2)方程表示的图形的*移为“左+右—,上—下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即。
(3)点的*移公式:点按向量*移到点,则。
37、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38、形如的周期都是,但的周期为。
39、正弦定理时易忘比值还等于2R。
五、*面向量
40、数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
41、数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。
已知实数,且,则a=c,但在向量的数量积中没有。
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。
42、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
43、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
44、用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45、直线的倾斜角、到的角、与的夹角的取值范围依次是。
46、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
47、对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
48、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
50、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
51、圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
53、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
54、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
55、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
56、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
57、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
58、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
59、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
60、求两条异面直线所成的角、直线与*面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
61、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
62、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
63、两条异面直线所成的角的范围:0°<α≤90°
直线与*面所成的角的范围:0o≤α≤90°
二面角的*面角的取值范围:0°≤α≤180°
64、你知道异面直线上两点间的距离公式如何运用吗?
65、*面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
66、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
67、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
68、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
八、排列、组合和概率
69、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
70、二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r。
71、你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互**事件同时发生的概率公式。)
72、二项式展开式的通项公式、n次**重复试验中事件A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0
73、求分布列的解答题你能把步骤写全吗?
74、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)
75、你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
高考数学知识点总结2
1、课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、*面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、*面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、*面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2、重难点及考点:
重点:函数,数列,三角函数,*面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸*面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的'位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、*面、简单几何体:空间直线、直线与*面、*面与*面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
高考数学知识点总结3
⑴定义:直线和*面没有公共点.
( 2)判定定理:若不在*面内的一条直线和*面内的一条直线*行,那么这条直线和这个*面*行
(3)面面*行的性质:两个*面*行,其中一个*面内的任何一条直线必*行于另一个*面
(4)线面垂直的性质:*面外与已知*面的垂线垂直的直线*行于已知*面
29、判定两*面*行的方法:(1)依定义采用反证法
(2)利用判定定理:如果一个*面内有两条相交直线*行于另一个*面,那么这两个*面*行。
(3)利用判定定理的推论:如果一个*面内有两条相交直线*行于另一个*面内的两条直线,则这两*面*行。
(4)垂直于同一条直线的两个*面*行。
(5)*行于同一个*面的两个*面*行。
高考数学知识点总结4
掌握每一个公式定理
做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
进行专题训练提高数学成绩
1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
3、如何学好高中数学
1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
3)主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
高考数学知识点总结5
高考数学知识点:轨迹方程的求解
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
.直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点:排列组合公式
排列组合公式/排列组合计算公式
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法."排列"
把5本书分给3个人,有几种分法"组合"
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!.n2!.....nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9.8.7.6.5.4.3.2.1
从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=P(3,9)=9.8.7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,**“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,**同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9.8.7/3.2.1
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.
点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种.
点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.
例4证明.
证明左式
右式.
∴等式成立.
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.
例5化简.
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可变为
∵,,
∴原方程可化为.
即,解得
高三数学三角函数公式
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的*方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
高考数学知识点总结6
求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“**为力”的,在解决函数的零点时要注意这个问题。
混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
an,Sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。
对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。0时,Δy/Δx-->常数A,就说函数y=f(x)在点x0处可导,并把A叫做f(x)在点x0处的导数(瞬时变化率).记作f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.瞬时速度就是位移函数s对时间t的导数.
2)如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
3)如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
2.函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
3.求导
在高中数学导数求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式,对于不具备求导法则结构形式的要适当恒等变形,对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为教易求导的结构形
高考数学知识点总结7
人教版高考数学复习知识点
1.有关*行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“*行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线*行(垂直)、线面*行(垂直)、面面*行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个*面*行的方法:
(1)根据定义--证明两*面没有公共点;
(2)判定定理--证明一个*面内的两条相交直线都*行于另一个*面;
(3)证明两*面同垂直于一条直线。
3.两个*面*行的主要性质:
(1)由定义知:“两*行*面没有公共点”;
(2)由定义推得:“两个*面*行,其中一个*面内的直线必*行于另一个*面”;
(3)两个*面*行的性质定理:“如果两个*行*面同时和第三个*面相交,那么它们的交线*行”;
(4)一条直线垂直于两个*行*面中的一个*面,它也垂直于另一个*面;
(5)夹在两个*行*面间的*行线段相等;
(6)经过*面外一点只有一个*面和已知*面*行。
高考高三数学复习知识点
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内*移直线,求出目标函数的最值。
不看后悔!清华名师**学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——*面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
人教版高考年级数学知识点
1、直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴*行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
2、直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
云南高考数学知识点总结
高考数学知识点总结8
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的
否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
易错点6 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函
数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。 易错点7 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点8 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点9 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
易错点10 函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“**为力”的,在解决函数的零点时要注意这个问题。
易错点11 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
易错点12 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
易错点13 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
数列
易错点14 用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。 易错点15 an,Sn关系不清致误
高考数学知识点总结9
三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的.假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题。
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+……+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
正弦、余弦典型例题。
1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°
4、若∠A为锐角,且,则A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、余弦解题诀窍。
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。
2、已知三边,或两边及其夹角用余弦定理
3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
高考数学知识点总结10
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的
否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。0时,Δy/Δx-->常数A,就说函数y=f(x)在点x0处可导,并把A叫做f(x)在点x0处的导数(瞬时变化率).记作f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.瞬时速度就是位移函数s对时间t的导数.
2)如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
3)如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
2.函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
3.求导
在高中数学导数求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式,对于不具备求导法则结构形式的要适当恒等变形,对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为教易求导的结构形
高考数学知识点总结11
(一)导数第一定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义
(二)导数第二定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义
(三)导函数与导数
如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间
高考数学知识点总结12
掌握每一个公式定理
做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
进行专题训练提高数学成绩
1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
3、如何学好高中数学
1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
3)主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
高考数学知识点总结13
一次函数的定义
一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数的性质
一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
注:一次函数一般形式y=kx+b(k不为0)
a)k不为0
b)x的指数是1
c)b取任意实数
一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx*移|b|个单位长度得到。(当b>0时,向上*移;b<0时,向下*移)
高考数学知识点总结14
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的
否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差数列。
数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能**。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的'符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
高考数学知识点总结15
三角函数
注意归一公式、诱导公式的正确性
数列题
证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题
证明线面位置关系,一般不需要去建系,更简单;
求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题
搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
搞清是什么概率模型,套用哪个公式;
记准均值、方差、标准差公式;
求概率时,正难则反(根据p1+p2+...+pn=1);
注意计数时利用列举、树图等基本方法;
注意放回抽样,不放回抽样。
高考数学知识点总结16
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d 5、d 二、圆和圆的位置关系,还可用有无公共点来判断: 1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。 2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。 3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类: 分类标准类型满足条件 项数有穷数列项数有限 无穷数列项数无限 项与项间的大小关系递增数列an+1>an其中n∈N. 递减数列an+1 常数列an+1=an (3)数列的通项公式: 如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式. 3.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 4.数列的函数特征 数列是一个定义域为正整数集N.(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N.). 一、高考数学中有函数、数列、三角函数、*面向量、不等式、立体几何等九大章节 主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。 二、*面向量和三角函数 对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。 三、数列 数列这个板块,重点考两个方面:一个通项;一个是求和。 四、空间向量和立体几何 在里面重点考察两个方面:一个是证明;一个是计算。 五、概率和统计 概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;**事件和**重复事件发生的概率。 六、解析几何 这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。 七、压轴题 同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,*时多做些压轴题真题,争取能解题就解题,能思考就思考。 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合. 2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。 高考数学知识点:轨迹方程的求解 符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性). 【轨迹方程】 就是与几何轨迹对应的代数描述。 一、求动点的轨迹方程的基本步骤 ⒈建立适当的坐标系,设出动点M的坐标; ⒉写出点M的集合; ⒊列出方程=0; ⒋化简方程为最简形式; ⒌检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 直译法:求动点轨迹方程的一般步骤 ①建系——建立适当的坐标系; ②设点——设轨迹上的任一点P(x,y); ③列式——列出动点p所满足的关系式; ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; ⑤证明——证明所求方程即为符合条件的动点轨迹方程。 高考数学知识点:排列组合公式 排列组合公式/排列组合计算公式 排列P——和顺序有关 组合C——不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!.n2!.....nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9.8.7.6.5.4.3.2.1 从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=P(3,9)=9.8.7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,如果三个一组,**“三国联盟”,可以组合成多少个“三国联盟”? A2:213组合和312组合,**同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9.8.7/3.2.1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式 右式. ∴等式成立. 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5化简. 解法一原式 解法二原式 点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可变为 ∵,, ∴原方程可化为. 即,解得 高三数学三角函数公式 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的*方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) ——中考数学知识点总结菁选 中考数学知识点总结集合15篇 总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可以提升我们发现问题的能力,让我们好好写一份总结吧。如何把总结做到重点突出呢?下面是小编整理的中考数学知识点总结,仅供参考,欢迎大家阅读。 一、初中数学基本知识 ㈠、数与代数 A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水*直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。 有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 *方根:①如果一个正数X的*方等于A,那么这个正数X就叫做A的算术*方根。②如果一个数X的*方等于A,那么这个数X就叫做A的*方根。③一个正数有2个*方根/0的*方根为0/负数没有*方根。④求一个数A的*方根运算,叫做开*方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AMAN=A(MN) (AM)N=AMN (A/B)N=AN/BN除法一样。 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:*方差公式/完全*方公式 整式的除法: ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。 方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式: ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。 ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 除法:除以一个分式等于乘以这个分式的倒数。 加减法: ①同分母的分式相加减,分母不变,把分子相加减。 ②异分母的分式先通分,化为同分母的分式,再加减。 分式方程: ①分母中含有未知数的方程叫分式方程。 ②使方程的分母为0的解称为原方程的增根。 20xx年中考数学基础知识总结20xx年中考数学基础知识总结 B、方程与不等式 1、方程与方程组 一元一次方程: ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。 一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程 1)一元二次方程的二次函数的关系 大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当的0的时候就构成了一元二次方程了。那如果在*面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了 2)一元二次方程的解法 大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解 (1)配方法 利用配方,使方程变为完全*方公式,在用直接开*方法去求出解 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解 (3)公式法 这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步骤: (1)配方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的*方,最后配成完全*方公式 (2)分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (3)公式法 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a 也可以表示为x1x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 5)一元一次方程根的情况 利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diata”,而△=b2-4ac,这里可以分为3种情况: I当△>0时,一元二次方程有2个不相等的实数根; II当△=0时,一元二次方程有2个相同的实数根; III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根) 2、不等式与不等式组 不等式: ①用符号〉,=,〈号连接的式子叫不等式。 ②不等式的两边都加上或减去同一个整式,不等号的方向不变。 ③不等式的.两边都乘以或者除以一个正数,不等号方向不变。 ④不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。 一元一次不等式组: ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ③求不等式组解集的过程,叫做解不等式组。 一元一次不等式的符号方向: 在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。 在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,AC>BC 在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0) 在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C 如果不等式乘以0,那么不等号改为等号 所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 二、函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水*方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:①若两个变量X,间的关系式可以表示成=XB(B为常数,不等于0)的形式,则称是X的一次函数。②当B=0时,称是X的正比例函数。 一次函数的图象:①把一个函数的自变量X与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数=X的图象是经过原点的一条直线。③在一次函数中,当〈0,B〈O,则经234象限;当〈0,B〉0时,则经124象限;当〉0,B〈0时,则经134象限;当〉0,B〉0时,则经123象限。④当〉0时,的值随X值的增大而增大,当X〈0时,的值随X值的增大而减少。 三、空间与图形 A、图形的认识 1、点,线,面 点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。 展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个*面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 20xx年中考数学基础知识总结建造师考试_建筑工程类工程师考试网 弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。 2、角 线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。 比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。 角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做*角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的*分线。 *行:①同一*面内,不相交的两条直线叫做*行线。②经过直线外一点,有且只有一条直线与这条直线*行。③如果两条直线都与第3条直线*行,那么这两条直线互相*行。 垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③*面内,过一点有且只有一条直线与已知直线垂直。 垂直*分线:垂直和*分一条线段的直线叫垂直*分线。 垂直*分线垂直*分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直*分线是一条直线,所以在画垂直*分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。 垂直*分线定理: 性质定理:在垂直*分线上的点到该线段两端点的距离相等; 判定定理:到线段2端点距离相等的点在这线段的垂直*分线上 角*分线:把一个角*分的射线叫该角的角*分线。 定义中有几个要点要注意一下的,就是角的角*分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角*分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角*分线就是到角两边距离相等的点 性质定理:角*分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角*分线上 正方形:一组邻边相等的矩形是正方形 性质:正方形具有*行四边形、菱形、矩形的一切性质 一、三角形的有关概念 1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。 三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。 2.三角形中的三条重要线段:角*分线、中线、高 (1)角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。 (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 说明:①三角形的角*分线、中线、高都是线段;②三角形的角*分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。 二、等腰三角形的性质和判定 (1)性质 1.等腰三角形的两个底角相等(简写成"等边对等角")。 2.等腰三角形的顶角的*分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。 3.等腰三角形的两底角的*分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的'垂直*分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边**意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.等腰三角形是轴对称图形,只有一条对称轴,顶角*分线所在的直线是它的对称轴,等边三角形有三条对称轴。 (2)判定 在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。 在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。 三、直角三角形和勾股定理 有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。 勾股定理:直角三角形两直角边a,b的*方和等于斜边c的*方,即a2+b2=c2。 勾股数一定是正整数,常见勾股数:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。 方法总结: 当不明确直角三角形的斜边长,应把已知最长边分为直角边和斜边两种情况讨论。无理数在数轴上的表示和线段长表示通常用到勾股定理。翻折题型常用勾股定理(口诀:翻折求边找直角,勾股定理设未知量) 如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。勾股定理的逆定理,常用于判断三角形的形状,先确定最大边(可以设为c)。 四、初中三角形中线定理 中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。 定理内容:三角形一条中线两侧所对边*方和等于底边的一半*方与该边中线*方和的2倍。 中线的定义:任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。 由定义可知,三角形的中线是一条线段。 由于三角形有三条边,所以一个三角形有三条中线。 且三条中线交于一点。这点称为三角形的重心。 每条三角形中线分得的两个三角形面积相等。 五、直角三角形的判定 判定1:有一个角为90°的三角形是直角三角形。 判定2:若a的*方+b的*方=c的*方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。 判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。 判定4:两个锐角互余的三角形是直角三角形。 判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。[定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL] 判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。 判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。 六、勾股定理的逆定理 如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的*方和与较长边的*方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若时,以a,b,c为三边的三角形是钝角三角形;若时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边. ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的*方等于两条直角边的*方和时,这个三角形是直角三角形。 七、三角形定理公式 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边。 三角形的内角和定理:三角形的三个内角的和等于180度。 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和。 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角。 三角形的三条角*分线交于一点(内心)。 三角形的三边的垂直*分线交于一点(外心)。 三角形中位线定理:三角形两边中点的连线*行于第三边,并且等于第三边的一半。 有理数: (1)凡能写成形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; (2)有理数的'分类:①② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a>0a是正数;a<0a是负数; a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数. 1.因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数?相同因式的最低次幂. 注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式: (1)*方差公式:a2-b2=(a+ b)(a- b); (2)完全*方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项: (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的.首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7.完全*方式:能化为(m+n)2的多项式叫完全*方式;对于二次三项式x2+px+q,有“ x2+px+q是完全*方式? ”. 圆的初步认识 一、圆及圆的相关量的定义(28个) 1.*面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆**意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆**意两点的线段叫做弦。经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的`切线,这个唯一的公共点叫做切点。 6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法(7个) 圆--⊙半径r弧--⌒直径d 扇形弧长/圆锥母线l周长C面积S三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。 8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。 9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离): AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO 10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。 11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P): 外离P外切P=R+r;相交R-r 三、有关圆的计算公式 1.圆的周长C=2d 2.圆的面积S=s=3.扇形弧长l=nr/180 4.扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl 四、圆的方程 1.圆的标准方程 在*面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是 (x-a)^2+(y-b)^2=r^2 2.圆的一般方程 把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是 x^2+y^2+Dx+Ey+F=0 和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2 相关知识:圆的离心率e=0.在圆**意一点的曲率半径都是r. 五、圆与直线的位置关系判断 链接:圆与直线的位置关系(一.5) *面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是 讨论如下2种情况: (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0. 利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切 如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离 (2)如果B=0即直线为Ax+C=0,即x=-C/A.它*行于y轴(或垂直于x轴) 将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2 令y=b,求出此时的两个x值x1,x2,并且我们规定x1 当x=-C/Ax2时,直线与圆相离 当x1 当x=-C/A=x1或x=-C/A=x2时,直线与圆相切 圆的定理: 1不在同一直线上的三点确定一个圆。 2垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧 推论1 ①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧 ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧 ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧 推论2 1圆的两条*行弦所夹的弧相等 3圆是以圆心为对称中心的中心对称图形 4圆是定点的距离等于定长的点的集合 5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 希望这篇20xx中考数学知识点汇总,可以帮助更好的迎接即将到来的考试! 函数 ①位置的确定与*面直角坐标系 位置的确定 坐标变换 *面直角坐标系内点的特征 *面直角坐标系内点坐标的符号与点的象限位置 对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称 变量、自变量、因变量、函数的定义 函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述 ②一次函数与正比例函数 一次函数的'定义与正比例函数的定义 一次函数的图象:直线,画法 一次函数的性质(增减性) 一次函数y=kx+b(k≠0)中k、b符号与图象位置 待定系数法求一次函数的解析式(一设二列三解四回) 一次函数的*移问题 一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法) 一次函数的实际应用 一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合 数学是研究数量结构、变化、以及空间模型等概念的科学。它是物理、化学等学科的基础,而且与我们的生活息息相关。所以说,学好数学对于我们每个同学来说都是非常重要的。下面我向大家介绍一下初中数学的学习方法与技巧: 一、*时的数学学习: 1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的`问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册做完。 2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。 3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。 4、单元测验是为了检测近期的学习情况。其实分数**的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。 二、期中期末数学复习: 要将*时的单元检测卷订成册,并且将错题再做一遍。如果整张试卷考得都不好,那么可以复印将试卷重做一遍。除试卷外,还可以将作业上的错题、难题、易错题重做一遍。另外,自己还可以做2——3张期末模拟卷。 三、数学考试技巧: 如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空。这些条件都对你的解题有很大帮助。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功。大概留35分钟的时间检查。 最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。 第一章实数 考点一、实数的概念及分类(3分) 1、实数的分类 正有理数 有理数零有限小数和无限循环小数实数负有理数**理数 无理数无限不循环小数负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如7,32等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如 (3)有特定结构的数,如0.1010010001等; (4)某些三角函数,如sin60o等 考点二、实数的倒数、相反数和绝对值(3分) 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、*方根、算数*方根和立方根(310分) 1、*方根 如果一个数的*方等于a,那么这个数就叫做a的*方根(或二次方跟)。一个数有两个*方根,他们互为相反数;零的*方根是零;负数没有*方根。正数a的*方根记做“。a” π+8等; 2、算术*方根 正数a的正的*方根叫做a的算术*方根,记作“a”。正数和零的算术*方根都只有一个,零的算术*方根是零。a(a0)a0 a2a;注意a的双重非负性: -a(a考点六、实数的运算(做题的基础,分值相当大) 1、加法交换律abba 2、加法结合律(ab)ca(bc) 3、乘法交换律abba 4、乘法结合律(ab)ca(bc) 5、乘法对加法的分配律a(bc)abac 6、实数混合运算时,对于运算顺序有什么规定? 实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的`顺序进行。 7、有理数除法运算法则就什么? 两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。 8、什么叫有理数的乘方?幂?底数?指数? 相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作:an 9、有理数乘方运算的法则是什么? 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。 10、加括号和去括号时各项的符号的变化规律是什么? 去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。 *行线与相交线 知识要点 一.余角、补角、对顶角 1,余角:如果两个角的和是直角,那么称这两个角互为余角. 2,补角:如果两个角的和是*角,那么称这两个角互为补角. 3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角. 4,互为余角的有关性质: ①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余, 则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3. 5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°. ②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C. 6,对顶角的性质:对顶角相等. 二.同位角、内错角、同旁内角的认识及*行线的性质 7,同一*面内两条直线的位置关系是:相交或*行. 8,“三线八角”的识别: 三线八角指的是两条直线被第三条直线所截而成的八个角. 正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.*行线的性质与判定 9,*行线的定义:在同一*面内,不相交的两条直线是*行线. 10,*行线的性质:两条*行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补. 11,过直线外一点有且只有一条直线和已知直线*行. 12,两条*行线之间的距离是指在一条直线**意找一点向另一条直线作垂线,垂线段的长度就是两条*行线之间的距离. 13,如果两条直线都与第三条直线*行,那么这两条直线互相*行. 14,*行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线*行;如果内错角相等.那么这两条直线*行;如果同旁内角互补,那么这两条直线*行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(*行)的,因此能否找到两直线*行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角. 15,常见的几种两条直线*行的结论: (1)两条*行线被第三条直线所截,一组同位角的角*分线*行; (2)两条*行线被第三条直线所截,一组内错角的角*分线互相*行. 四.尺规作图 16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差. 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的.对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值。 (2)描点:以表中每对对应值为坐标,在坐标*面内描出相应的点。 (3)连线:按照自变量由小到大的顺序,把所描各点用*滑的曲线连接起来。 中位线概念 (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。 注意(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的`对边中点的线段,而三角形中位线是连接三角形两边中点的线段。 (2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。 中位线定理 (1)三角形中位线定理:三角形的中位线*行于第三边并且等于它的一半. (2)梯形中位线定理:梯形的中位线*行于两底,并且等于两底和的一半. 中位线定理推广 三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。 圆的定理: 1不在同一直线上的三点确定一个圆。 2垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧 推论1①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧 ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧 ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧 推论2圆的两条*行弦所夹的弧相等 3圆是以圆心为对称中心的中心对称图形 4圆是定点的距离等于定长的点的集合 5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 7同圆或等圆的半径相等 8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 中考数学知识点复习口诀 有理数的加法运算 同号相加一边倒;异号相加“大”减“小”, 符号跟着大的`跑;绝对值相等“零”正好。 合并同类项 合并同类项,法则不能忘,只求系数和,字母、指数不变样。 去、添括号法则 去括号、添括号,关键看符号, 括号前面是正号,去、添括号不变号, 括号前面是负号,去、添括号都变号。 一元一次方程 已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。 *方差公式 *方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。 完全*方公式 完全*方有三项,首尾符号是同乡,首*方、尾*方,首尾二倍放**; 首±尾括号带*方,尾项符号随**。 因式分解 一提(公因式)二套(公式)三分组,细看几项不离谱, 两项只用*方差,三项十字相乘法,阵法熟练不马虎, 四项仔细看清楚,若有三个*方数(项), 就用一三来分组,否则二二去分组, 五项、六项更多项,二三、三三试分组, 以上若都行不通,拆项、添项看清楚。 单项式运算 加、减、乘、除、乘(开)方,三级运算分得清, 系数进行同级(运)算,指数运算降级(进)行。 一元一次不等式解题步骤 去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉, 两边除(以)负数时,不等号改向别忘了。 一元一次不等式组的解集 **取较大,小小取较小,小大、大小取中间,大小、小大无处找。 一元二次不等式、一元一次绝对值不等式的解集 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 分式混合运算法则 分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘); 乘法进行化简,因式分解在先,分子分母相约,然后再行运算; 加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。 中考数学知识点归纳:*面直角坐标系 *面直角坐标系 1、*面直角坐标系 在*面内画两条互相垂直且有公共原点的数轴,就组成了*面直角坐标系。 其中,水*的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的*面,叫做坐标*面。 为了便于描述坐标*面内点的位置,把坐标*面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。*面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。 中考数学知识点:分式混合运算法则 分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简. 分式混合运算法则: 分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘); 乘法进行化简,因式分解在先,分子分母相约,然后再行运算; 加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简. 中考数学二次根式的加减法知识点总结 二次根式的加减法 知识点1:同类二次根式 (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。 (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的'因式无关。 知识点2:合并同类二次根式的方法 合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。 知识点3:二次根式的加减法则 二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。 知识点4:二次根式的混合运算方法和顺序 运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。 知识点5:二次根式的加减法则与乘除法则的区别 乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。 中考数学知识点:直角三角形 ★重点★解直角三角形 ☆内容提要☆ 一、三角函数 1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=. 2.特殊角的三角函数值: 0°30°45°60°90° sinα cosα tgα/ ctgα/ 3.互余两角的三角函数关系:sin(90°-α)=cosα;… 4.三角函数值随角度变化的关系 5.查三角函数表 二、解直角三角形 1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 2.依据:①边的关系: ②角的关系:A+B=90° ③边角关系:三角函数的定义。 注意:尽量避免使用中间数据和除法。 三、对实际问题的处理 1.俯、仰角:2.方位角、象限角:3.坡度: 4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。 二次函数的解析式有三种形式: (1)一般式: (2)顶点式: (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。 注意:抛物线位置由决定。 (1)决定抛物线的开口方向 ①开口向上。 ②开口向下。 (2)决定抛物线与y轴交点的位置。 ①图象与y轴交点在x轴上方。 ②图象过原点。 ③图象与y轴交点在x轴下方。 (3)决定抛物线对称轴的位置(对称轴:) ①同号对称轴在y轴左侧。 ②对称轴是y轴。 ③异号对称轴在y轴右侧。 (4)顶点坐标。 (5)决定抛物线与x轴的交点情况。、 ①△>0抛物线与x轴有两个不同交点。 ②△=0抛物线与x轴有的公共点(相切)。 ③△<0抛物线与x轴无公共点。 (6)二次函数是否具有、最小值由a判断。 ①当a>0时,抛物线有最低点,函数有最小值。 ②当a<0时,抛物线有点,函数有值。 (7)的符号的判定: 表达式,请代值,对应y值定**; 对称轴,用处多,三种式子相约; 轴两侧判,左同右异中为0; 1的两侧判,左同右异中为0; —1两侧判,左异右同中为0。 (8)函数图象的*移:左右*移变x,左+右—;上下*移变常数项,上+下—;*移结果先知道,反向*移是诀窍;*移方式不知道,通过顶点来寻找。 (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。 (10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0; ②二次函数(的顶点在y轴上二次函数的'图象关于y轴对称; ③二次函数(经过原点,则。 (11)二次函数的解析式: ①一般式:(,用于已知三点。 ②顶点式:,用于已知顶点坐标或最值或对称轴。 (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。 一、 重要概念 1。数的分类及概念 数系表: 说明:“分类”的原则:1)相称(不重、不漏) 2)有标准 2。非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 3。倒数: ①定义及表示法 ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。 4。相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。 5。数轴:①定义(“三要素”) ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。 6。奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7。绝对值:①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的'距离。 ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要***“││”出现,其关键一步是去掉“││”符号。 1、解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除**防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。 **小小没有解,四种情况全来了。 同向取两边,异向取中间。 中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。(大小小大就是它) **小小解集空。(小小**哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 A正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 用*方差公式因式分解 异号两个*方项,因式分解有办法。 两底和乘两底差,分解结果就是它。 用完全*方公式因式分解 两*方项在两端,底积2倍在中部。 同正两底和*方,全负和方相反数。 分成两底差*方,方正倍积要为负。 两边为负中间正,底差*方相反数。 一*方又一*方,底积2倍在中路。 三正两底和*方,全负和方相反数。 分成两底差*方,两端为正倍积负。 两边若负中间正,底差*方相反数。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程 左未右已先分离,二系化“1”是其次。 一系折半再*方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。 用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全*方等常数,间接配方显优势 【注】恒等式 2、解一元二次方程 方程没有一次项,直接开方最理想。 如果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。 3、正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数是否,辨别需分两步走。 一量表示另一量,有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数的图象与性质 正比函数图直线,经过和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。 4、一次函数 一次函数图直线,经过点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 5、反比例函数 反比函数双曲线,经过点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 6、二次函数 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,*移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,*移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点*移两条路。 提取配方定顶点,*移描点皆成图。 列表描点后连线,三点大致定全图。 若要*移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。高考数学知识点总结17
高考数学知识点总结18
高考数学知识点总结19
高考数学知识点总结20
高考重点数学知识点 (菁选5篇)(扩展8)
中考数学知识点总结1
中考数学知识点总结2
中考数学知识点总结3
中考数学知识点总结4
中考数学知识点总结5
中考数学知识点总结6
中考数学知识点总结7
中考数学知识点总结8
中考数学知识点总结9
中考数学知识点总结10
中考数学知识点总结11
中考数学知识点总结12
中考数学知识点总结13
中考数学知识点总结14
中考数学知识点总结15
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除