平行四边形证明题
由条件可知,这是通过三角形的中位线定理来判断FG平行DA,同理HE平行DA,GE平行CB,FH平行CB!~
我这一化解,楼主应该明白了吧!~
希望楼主采纳,谢谢~!不懂再问!!!
此题关键就是对于三角形的中位线定理熟不!~!~·
已知:F,G是△CDA的中点,所以FG是△CDA的中位线,所以FG平行DA
同理HE是△BAD的中位线,所以HE平行DA,所以FG平行HE
同理可得:FH平行GE!~
即四边形FGEH是平行四边形(两组对边分别平行的四边形是平行四边形
2
证明:∵E,F,G,H分别是AB,CD,AC,BD的中点
∴FG//AD,HE//AD,FH//BC,EG//BC
∴FG//HE,FH//EG
∴四边形EGFH是平行四边形
3.
理由:连接一条对角线,AC吧。
∵AD平行BC,AB平行DC(平行四边形的性质)
∴∠DAC=∠ACB,∠BAC=∠DCA
在△ABC和△DAC中,
∠DAC=∠ACB
AC=CA
∠BAC=∠DCA
所以,△ABC全等于△DAC(A.S.A)
所以,AB=DA,AD=BC
证明:∵四边形ABCD为平行四边形;
∴DC‖AB;
∴∠EAF=∠DEA
∵AE,CF,分别是∠DAB、∠BCD的平分线;
∴∠DAE=∠EAF;∠ECF=∠BCF;
∴∠EAF=∠CFB;
∴AE‖CF;
∵EC‖AF
∴四边形AFCE是平行四边形
4
1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..
3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形 (5)两组对角分别相等的四边形为平行四边形 (注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。) (1)平行四边形对边平行且相等。 (2)平行四边形两条对角线互相平分。 (3)平行四边形的对角相等,两邻角互补 。 (4)连接任意四边形各边的中点所得图形是平行四边形。(推论) (5)平行四边形的面积等于底和高的积。(可视为矩形) (6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 (7)对称中心是两对角线的交点。
性质9(8)矩形 菱形是轴对称图形。 (9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分, 一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。 *注:正方形,矩形以及菱形也是一种特殊的平行四边形。 (10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和 。 (11)平行四边形对角线把平行四边形面积分成四等分 。 (12) 平行四边形是中心对称图形,但不是轴对称图形。 (13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角 。 (14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。 编辑本段平行四边形中常用辅助线的添法一、连接对角线或平移对角线。 二、过顶点作对边的垂线构成直角三角形。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除