最大公因数教案
最大公因数教案(通用12篇)
作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以更好地组织教学活动。那么写教案需要注意哪些问题呢?以下是小编为大家收集的最大公因数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
最大公因数教案 篇1
教材分析:
例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。
学情分析:
学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。
教学目标:
1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
重点难点:
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
方法指导:
自主学习合作探究
教学过程: 一、激趣导入
(约5分钟)
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
二、自主学习
(约5分钟)
1、几个数( )叫做这几个数的公因数,其中最大的一个叫做( )
2、16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。
3、A=225,B=235,那么A和B的最大公因数是( )。
4、用短除法求出99和36的最大公因数。
三、合作交流
(约13分钟)
小组合作学习教材第62页例3。
1、学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是x厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的'发现在小组里交流。
3、总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
四、精讲点拨
(约8分钟)
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
五、测评总结
(约9分钟)
1、达标练习
(1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?
(2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?
(3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?
六、全课总结
这节课你都学到了什么知识?有什么收获?
七、作业布置
练习十五5,6题。
板书设计:
最大公因数(2)
铺砖问题:求公因数
最大公因数教案 篇2
设计说明 1.创设教学情境,揭示数学与现实生活的联系。
在教学中创设恰当的教学情境,可以起到激发学生学习热情和学习兴趣,提高课堂教学效率的作用。本设计注重联系生活实际,把数学知识设置在具体生活情境之中,让学生在具体情境中发现问题,引发学生的思考,从而明确公因数和最大公因数的概念,让学生体会到数学与生活的密切联系。
2.让学生自主探究,向学生渗透集合思想。
掌握科学的数学思想方法对提升学生的思维能力和数学学科的后续学习都具有十分重要的意义。在学习公因数的过程中,把8和12的公因数用集合图的形式表示出来,向学生渗透了集合思想,为学生以后的学习奠定基础。
课前准备
教师准备:卡片、PPT课件
教学过程 ⊙复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
⊙创设情境,引出问题
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的`公因数。其中,4是最大的公因数,叫做它们的最大公因数。
学生自学教材60页例1。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
⊙求两个数的最大公因数
1.明确方法,提出要求。
师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
完成教材61页1题。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
设计意图:通过观察、发现、设问引导学生探究求最大公因数的方法。通过交流思考、师生讨论让学生的推理能力得到充分发挥。
最大公因数教案 篇3
教学目标:
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
2、探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。
基本教学过程: 一、创设活动情境,进行找因数活动:
1、用乘法算式的方式分别找12和18的因数,
2、用集合的方式找出12和18的因数,分别填在各自的圈中。
3、同位交流找因数的方法。
二、自主探索,总结找两个数的公因数的方法:
1、交流方法
2、激趣导思
①小组讨论:
两个集合相交的部分填那些因数?
②小组汇报:
③师总结:揭示公因数和最大公因数的概念。
这两个集合相交的部分填的.这些因数就是12和18的公因数,其中最大的一个就是它们的最大公因数。
④还有其他方法吗?
小组讨论:
小组汇报:
⑤总结找两个数公因数的方法
3、拓展引思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
最大公因数教案 篇4
教学内容:
课本 P79~81 例 1、例 2。
教学目标: 1.知识与技能:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:
使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:
在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的`意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
了解求两个数的最大公因数的计算原理。
教学用具:
自制课件。
教学过程: 一、复习导入
1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?
2.叙述:同学们学以致用的能力还真是很强,知道会用因数的知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片
[从学生的实际生活引入,可以激发学生的学习兴趣。]
二、探索新知
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
(2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画
4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?
过渡语:今天我们就重点来研究最大公因数。
5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?
8.练习:口答最大公因数。
4 和6 24和8 5和7 6和11
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。
[在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]
三、巩固练习
1.选两个数求最大公因数
12 和 18
99 和 132
24 和 30
39 和 65
2.找最大公因数。
(1)A=2×2×5×7
B=2×3×7
(A,B)=?
(2)甲数=A×B×C
乙数=D×E×F
(甲数,乙数)=?
3.反馈练习。
(1)直接写出下面各组数的最大公因数。
(27、9)(17、51)(13、39)((3、8)
(13、11)(15、16)(4、6)(6、8)
(8、24)(15、30)(16、48)(5、11)
(11、12)(13、17)
(2)填空。
小于10的最大偶数与最小合数的最大公因数是( )。
小于10的最大奇数与奇数中最小的质数的最大公因数是( )。
最小的质数与最小的合数的最大公因数是( )。
自然数中最小的两个质数的最大公因数是( )。
小于10的最大两个合数的最大公因数是( )。
甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。
四、全课总结
你对今天的课有什么评价?谈谈你的感想好吗?
板书设计:
最大公因数
16 的因数:1,2,4,8,16
12 的因数:1,2,3,4,6,12
16=2 × 2 × 2 ×2 18= 2 ×3×3
12=2 × 2 × 3 24= 2 ×2×2×3
(16,12)=2 × 2=4 (18,24)=2×3=6
最大公因数教案 篇5
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
求两个数的公因数和最大公因数。
教学难点:
理解求公因数和最大公因数的方法。
教学准备:
小黑板
教学过程: 一、铺垫准备
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的`因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知
认识公因数。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2 186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3 184=4......2)
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
最大公因数教案 篇6
一、教学内容
最大公因数(二)
教材第82、83页练习十五的第2一9题。
二、教学目标
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
三、重点难点
掌握找两个数最大公因数的方法。
四、教具准备
投影。
五、教学过程
1.完成教材第82页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。
2.完成教材第82页练习十五的第3一5题。
学生独立填在课本上,集体交流。
3.完成教材第83页练习十五的第6题。
学生独立填写,集体交流,体会两个数的`最大公因数是1的几种情况。
4.完成教材第83页练习十五的第7一11题。
学生独立审题,理解题意,然后试着解答,集体交流。
5.指导学生阅读教材第83页的“你知道吗”。
请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?
思维训练
1.某服装厂的甲车间有42人,乙车间有48人。为了开展竞赛,把两个车间的工人分成人数相等的小组。每组最多有多少人?
2.有一个长方体,长70厘米,宽50厘米,高45厘米。如果要切成同样大的小正方体,这些小正方体的棱长最大可以是多少厘米?
3.把一块长8分米、宽6分米的铁皮切割成同样大小的正方形铁皮,如果没有剩余,正方形个数又要最少,那么可以切割成多少块?
课堂小结
通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。
最大公因数教案 篇7
教学内容:
教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:
进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:
弄清公倍数和公因数联系与区别。
教学过程: 一、揭示课题
今天我们继续完成一些公因数、公倍数的有关练习。
二、基础训练
1.写出36和24的公因数,最大公因数是多少?
2.写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,汇报交流。
说说自己是用什么方法找到的'?
三、综合练习
1.完成练习五第12题。
谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
在书上完成连线后汇报方法。
你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?
2.完成第13题。
独立完成。交流各自方法。
3.完成第14题。
独立完成。交流各自方法。
求最大公因数和最小公倍数的方法有什么相同和不同?
什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?
4.完成思考题。
(1)小组讨论方法。
(2)指导解法。
把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。
5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法
四、课堂
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。
最大公因数教案 篇8
教学目标:
1、进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2、进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3、通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:
理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:
理解实际问题中的数量关系,根据数量关系列方程解答。
教学实施: 一、疏通概念
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行整理与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
公倍数与公因数
认识分数
分数的基本性质
分数的加减法
2、揭题
今天这节课我们先来复习方程,公倍数与公因数(出示课题)
3、讨论与思考:本学期学习了方程的哪些知识?
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
二、专项练习
1、方程的复习
⑴整理与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
等式
方程
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
⑵整理与复习第2题
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
出示练一练,找出括号中方程的解
①3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
③x÷5=120(x=24x=600)
⑶列方程解决实际问题
?米11.7平方米?米
2.7米
6.9米3.9米
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师小结,用方程计算可以使很多问题变的简单,容易解决。
⑷整理与复习第4题学生读题后独立用方程解决。
2、公倍数和公因数的复习
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
出示练习①写出每组数的最小公倍数
6和94和82和3
②写出每组数的最大公因数
18和2415和602和3
请做得快的同学介绍经验
三、全课小结
今天我们复习了什么,你有哪些收获?
四、课堂作业
整理与复习第3题、第5题、第6题。
教学反思
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与整理还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的.数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。
最大公因数教案 篇9
教学内容:
第49-50页。
教学目标:
1、练习找公因数,巩固找公因数的基本方法。
2、练习约分,综合运用分数的意义、约分等知识来解决相应的问题。
3、体验数学知识与日常生活密切相关。
教具准备:
实物投影仪。
教学过程: 一、基础练习。
1、分数的基本性质。
▲△△(1)说一说“▲”占全部三角形的几分之几?可以怎么表示?
▲△△(2)说一说“▲”占“△”的几分之几?
▲△△(3)说一说3/9=1/3,3/6=1/2的理由。
2、找最大公因数,约分。
(1)6的因数有哪些?9的因数有哪些?
6和9的公因数有哪些?6和9的最大公因数是什么?
(2)什么是约数?什么是最简分数?
二、练一练。
1、第1、2题请学生独立完成。
(1)第1题,指出下表中20的因数,15的因数,说一说20和15的公因数。这题主要练习找公因数,巩固找公因数的基本方法。
(2)第2题,投篮,这题主要练习约分,先将这些数进行约分,再连一连。
2、(1)第3题,请学生现自己用分数,在小组里交流自己的思考方法。这题要综合运用到分数的意义以及约分等知识。
(2)第4题,用分数表示图中各种颜色的面积占总面积的几分之几。先让学生找出分数,说说自己的思考方法,然后根据具体情况请学生提出一些问题。
(3)第5题,将题中的图形分成几部分,并用分数表示各部分面积占总面积的几分之几。鼓励学生自由分割。
(4)第6题,请学生现读懂题目,帮助学生理解题意。然后思考:选择怎样的`地砖才能没有剩余?引导学生认识到,问题的实质在于要求24和30的公因数。因为24和30的公因数是1,2,3,6,所以可以选择边长是1dm,2dm,3dm,6dm的方砖。
三、实践活动。
1、让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。
2、让学生自己设计一张表格,并用分数知识进行交流。
最大公因数教案 篇10
教学内容:
教科书第25页,练习四第5~8题。
教学目标:
1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。
2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。
3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。
教学过程: 一、基本训练
1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。
(板书课题:公倍数和最小公倍数练习)
2、填空。
5的倍数有:( )
7的倍数有:( )
5和7的公倍数有:( )
5和7的最小公倍数是:( )
3、完成练习四第5题。
(1)理解题意,独立找出每组数的最小公倍数。
(2)汇报结果,集体评讲。
(3)观察第一组中两个数的最小公倍数,看看有什么发现?
每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?
(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)
在有些情况下,两个数的最小公倍数是这两个数的.乘积。
4、完成练习四第6题。
你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?
交流,汇报。
说说你是怎么想的?
二、提高训练
1、完成练习四第7题。
(1)理解题意,独立完成填表。
(2)你是怎样找到这两路车第二次同时发车的时间的?
你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)
2、完成练习四第8题。
(1)理解题意。
(2)“每隔6天去一次”是指7月31日去过以后,下一次训练日期是8月6日。“每隔8天去一次”指的是什么呢?
你能说说,他们下次相遇,是在几月几日吗?(8月24日)
你是怎样知道的?
要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)
三、课堂小结
通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。
在小组中互相说说自己本节课的收获。
最大公因数教案 篇11
教学目标:
1、让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力。
教学重点、难点:
公因数与最大公因数的定义,探索找两个数的最大公因数
教学准备:
多媒体课件。
教学过程: 一、预设情境,感受新知 1、情境引入
情境图→文字→表格
最近杨老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。
你知道凌老师对铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)
2、合作探究
(1)讨论
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)
(2)交流
A、交流边长是“4” 为什么?→你们觉得行吗?→铺满
B、交流边长是“2” 出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满
C、交流边长是“1” 铺一个角→你觉得长边、短边可以分别铺几块?→铺满
二、探究新知
1、认识公因数和最大公因数
(1)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
(宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)
(2)抽象公因数概念
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)
同意吗?(能听懂他的意思吗?说的`是什么?)
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
你发现什么?
(我发现1、2、4既是12的因数又是16的因数。)能不能简单的说说,它们是12和6的什么数吗?
(1、2、4是12和16公有的因数,1、2、4是12和16的公因数) 板书“公因数”
说能说一说什么是公因数
几个数共有的因数,就是这几个数的公因数。
那16和12的公因数有:1、2、4。
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
(点击课件出示两独立集合圈)
这集合圈我们可以看成是16的因数,这一个集合圈我们可以看成是12的因数(课件动态显示两集合圈移动形成交集)
现在中间的表示什么呢?应该填?(生说师点击课件)
那这圈里的(指左边、右边)填?表示?
(4)认识最大公因数
如果凌老师想用最少的块数铺好地面,可以选择边长是几分米的地砖?
你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)
实际上这4就是16和12的最大公因数,板书“最大公因数”
16和12的最大公因数是4
2、运用新知识,解决“老”问题
如果现在让我们考虑“可以选择边长是几分米的地砖”,我们可以直接?(写因数,找公因数)
那如果解决“边长最大是几分米”呢?(最大公因数)
三、合作交流、探索方法
大家刚才帮助凌老师解决边长可以几分米时,先找两个数的因数、然后圈出两个数的公因数,再找最大的公因数,就是我们求最大公因数的一般方法。会求两个数的最大公因数吗?
求最大公因数:18和27 15和10 两生板书
交流反馈。
想想看,还有没有更简单的方法呢?
如果我指找出一个数的因数,你能找出两个数的最大公因数吗?现在只找出18的因数,你能找到18和27的最大公因数吗?
“先找小的数18的因数,再看哪些是27的因数”
那如果只找了27的因数呢?
“先找27的因数,再看哪些是18的因数”
你能找出10和15的最大公因数吗?
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
四、巩固练习、总结提升
1、找出下列每组数的最大公因数
4和8 6和18 1和7 8和9
2、小游戏
(1)找同桌学号的最大公因数
你们是怎么找的?
(2)凌老师上学的时候学号是36号,与我的同桌学号最大公因数是12。你知道我的同桌是几号吗?
你是怎么想的?
当时我们班级人数不到60人,我同桌的学号有6个因数。现在你知道他到底是几号吗?
最大公因数教案 篇12
教学内容:
教科书第26-27页的例3、例4和“练一练”,练习五的第1-5题。
教学目标:
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:
认识公因数和最大公因数。
教学难点:
掌握在100以内找出两个数的公因数和最大公因数的方法。
教学准备:
长18厘米、宽12厘米的长方形纸片,边长6厘米、4厘米的正方形纸片。
教学过程: 一、经历操作活动,认识公因数
1、操作活动。
⑴先让学生用边长6厘米、4厘米的正方形纸片分别铺长18厘米、宽12厘米的长方形。
再提问:哪种纸片能将长方形正好铺满?
⑵交流:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?
⑶1、2、3、6有什么共同的特征?
⑷4为什么不是12和18的公因数?
揭示:1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数。
二、自主探索,用列举的方法求公因数和最大公因数
1、自主探索。
提问:8和12的公因数有哪些?最大的公因数是几?你能试着找一找吗?
学生自主活动,在小组里交流。可能的方法有:
①先找出8的因数,再从8的因数中找出12的因数。
②先找出12的因数,再从12的因数中找出8的因数。
2、明确8和12的公因数中最大的一个是4,指出:就是8和12的最大公因数。
3、用集合图表示。
出示相交的集合圈,让学生把8和12的因数分别填在集合图中的合适部分,再看图说说各自的想法。
4、完成“练一练”
重点让学生操作与填空。
三、巩固练习,加深对公因数和最大公因数的'认识
1、练习五第1题。
填好后让学生看图说说15和20的因数分别有哪些,公因数有哪些,最大公因数是几?
2、练习五第2题。
3、练习五第3题。
先让学生独立完成,再具体说说找两个数的公因数和最大公因数的方法。
4、练习五第4题。
先出示第1组数,让学生判断,并说说是怎样判断的。然后完成先面几组。
5、练习五第5题。
鼓励学生用自己的方法找出每组数的最大公因数,并说说是怎样做的,怎样想的。
四、全课小结
提问:今天学习的是什么内容?什么是两个数的公因数和最大公因数?怎样找两个数的最大公因数?
引导:你还有什么疑问?
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除