高中数学知识点:推导公式

第1篇:高中数学知识点:推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos^2

1-cos2=2sin^2

1+sin=(sin/2+cos/2)^2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(3/2)-sina]

=4sina(sin60-sina)

=4sina(sin60+sina)(sin60-sina)

=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(3/2)]

=4cosa(cosa-cos30)

=4cosa(cosa+cos30)(cosa-cos30)

=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

第2篇:高三理科数学诱导公式知识点

常用的诱导公式有以下几组:

公式一:

设为任意角,终边相同的角的同一三角函数的值相等:

sin(2k)=sin(kz)

cos(2k)=cos(kz)

tan(2k)=tan(kz)

cot(2k)=cot(kz)

公式二:

设为任意角,的三角函数值与的三角函数值之间的关系:

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot

公式三:

任意角与-的三角函数值之间的关系:

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

公式四:

利用公式二和公式三可以得到与的三角函数值之间的关系:

sin()=sin

cos()=-cos

tan()=-tan

cot()=-cot

公式五:

利用公式一和公式三可以得到2与的三角函数值之间的关系:

sin(2)=-sin

cos(2)=cos

tan(2)=-tan

cot(2)=-cot

公式六:

/2及3/2与的三角函数值之间的关系:

sin(/2+)=cos

cos(/2+)=-sin

tan(/2+)=-cot

cot(/2+)=-tan

sin(/2-)=cos

cos(/2-)=sin

tan(/2-)=cot

cot(/2-)=tan

sin(3/2+)=-cos

cos(3/2+)=sin

tan(3/2+)=-cot

cot(3/2+)=-tan

sin(3/2-)=-cos

cos(3/2-)=-sin

tan(3/2-)=cot

cot(3/2-)=tan

(以上kz)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

规律总结

上面这些诱导公式可以概括为:

对于/2*k(kz)的三角函数值,

①当k是偶数时,得到的同名函数值,即函数名不改变;

②当k是奇数时,得到相应的余函数值,即sincostancot,cottan.

(奇变偶不变)

然后在前面加上把看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2)=sin(4/2-),k=4为偶数,所以取sin。

当是锐角时,2(270,360),sin(2)0,符号为-。

所以sin(2)=-sin

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把视为锐角时,角k360+(kz),-、180,360-

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀一全正;二正弦(余割);三两切;四余弦(正割).

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是+

第二象限内只有正弦是+,其余全部是-

第三象限内切函数是+,弦函数是-

第四象限内只有余弦是+,其余全部是-.

上述记忆口诀,一全正,二正弦,三内切,四余弦

还有一种按照函数类型分象限定正负:

函数类型第一象限第二象限第三象限第四象限

正弦...........+............+................................

余弦...........+....................................+........

正切...........+........................+....................

余切...........+........................+....................

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tancot=1

sincsc=1

cossec=1

商的关系:

sin/cos=tan=sec/csc

cos/sin=cot=csc/sec

平方关系:

sin^2()+cos^2()=1

1+tan^2()=sec^2()

1+cot^2()=csc^2()

同角三角函数关系六角形记忆法

六角形记忆法:

构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有*影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

两角和与差的三角函数公式

sin(+)=sincos+cossin

sin(-)=sincos-cossin

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2=2sincos

cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()

tan2=2tan/[1-tan^2()]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(/2)=(1-cos)/2

cos^2(/2)=(1+cos)/2

tan^2(/2)=(1-cos)/(1+cos)

另也有tan(/2)=(1-cos)/sin=sin/(1+cos)

万能公式

sin=2tan(/2)/[1+tan^2(/2)]

cos=[1-tan^2(/2)]/[1+tan^2(/2)]

tan=2tan(/2)/[1-tan^2(/2)]

万能公式推导

附推导:

sin2=2sincos=2sincos/(cos^2()+sin^2())......*,

(因为cos^2()+sin^2()=1)

再把*分式上下同除cos^2(),可得sin2=2tan/(1+tan^2())

然后用/2代替即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3=3sin-4sin^3()

cos3=4cos^3()-3cos

tan3=[3tan-tan^3()]/[1-3tan^2()]

三倍角公式推导

附推导:

tan3=sin3/cos3

=(sin2cos+cos2sin)/(cos2cos-sin2sin)

=(2sincos^2()+cos^2()sin-sin^3())/(cos^3()-cossin^2()-2sin^2()cos)

上下同除以cos^3(),得:

tan3=(3tan-tan^3())/(1-3tan^2())

sin3=sin(2+)=sin2cos+cos2sin

=2sincos^2()+(1-2sin^2())sin

=2sin-2sin^3()+sin-2sin^3()

=3sin-4sin^3()

cos3=cos(2+)=cos2cos-sin2sin

=(2cos^2()-1)cos-2cossin^2()

=2cos^3()-cos+(2cos-2cos^3())

=4cos^3()-3cos

sin3=3sin-4sin^3()

cos3=4cos^3()-3cos

三倍角公式联想记忆

记忆方法:谐音、联想

正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要挣钱(音似正弦))

余弦三倍角:4元3角减3元(减完之后还有余)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

另外的记忆方法:

正弦三倍角:山无司令(谐音为三无四立)三指的是3倍sin,无指的是减号,四指的是4倍,立指的是sin立方

余弦三倍角:司令无山与上同理

和差化积公式

三角函数的和差化积公式

sin+sin=2sin[(+)/2]cos[(-)/2]

sin-sin=2cos[(+)/2]sin[(-)/2]

cos+cos=2cos[(+)/2]cos[(-)/2]

cos-cos=-2sin[(+)/2]sin[(-)/2]

积化和差公式

三角函数的积化和差公式

sincos=0.5[sin(+)+sin(-)]

cossin=0.5[sin(+)-sin(-)]

coscos=0.5[cos(+)+cos(-)]

sinsin=-0.5[cos(+)-cos(-)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

第3篇:中考数学直线的公式定理知识点辅导

直线(straightline)是几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。或者定义为:曲率最小的曲线(以无限长为半径的圆弧)。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与x轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于x轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。

在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。在欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。

在非欧几何中直线指连接两点间最短的线,又称短程线。

方向向量:截取直线l上两点a(l,n,0)和b(k+l,m+n,1)方向向量为:ab=(k,m,1)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除