高中数学圆锥曲线知识点

第1篇:高中数学圆锥曲线知识点

圆锥曲线,在高考中一直作为压轴大题的形式出现,其实圆锥曲线很简单,那么从哪些地方下手才能轻松学好圆锥曲线呢?下面是高中数学圆锥曲线知识点的内容,欢迎阅读!

圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点做对称圆锥,则可得到双曲线。

在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研究平面曲线的*质。

那么接下来,我们就就着这两个问题来说啦~

(一)曲线与方程

首先第一个问题,我们想到的就是曲线与方程的这部分内容了。

在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。在这里呢,简单的说一下,一共有四种方法:1。直接法由题设所给(或通过分析图形的几何*质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

2。定义法

利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

3。相关点法

若动点p(x,y)随已知曲线上的点q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将q点坐标表达式代入已知曲线方程,即得点p的轨迹方程。这种方法称为相关点法(或代换法)。

4。待定系数法

求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求

(二)椭圆,双曲线,抛物线

这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。(不会的通宵快去恶补~~~)

在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。当然了,各圆锥曲线的几何*质也尤其重要,包括离心率,顶点,对称*,范围,以及焦点弦,准线,渐近线等等。这些*质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看△;直线与双曲线的位置关系,先看联立之后的方程中的a,如果a=0方程有一解,直线与双曲线有一个公共点(直线与渐近线平行),a≠0的时候,还是看△啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当a=0直线与抛物线有一个公共点(直线与抛物线的轴平行或重合),a≠0的时候,还是看△。

第2篇:高考数学圆锥曲线的知识点

导语:高考如何复习,一直是各位面临高考的考生们最为关注的话题,下面是小编为大家整理的,数学知识,更多相关信息请关CNFLA学习网!

1高考数学常用的圆锥曲线定义

⒈若一个圆c1内含于另一个圆c2,则与大圆内切与小圆外切的圆的圆心的轨迹为一

椭圆,两圆的圆心为焦点,其长轴长为两圆半径之和;

⒉在一个圆内有一点,则过该点且与已知圆相切的圆的圆心的点的轨迹为一椭圆,且其长

轴长为已知圆的半径。

⒊过两点的两条直线的斜率之积为一负常数m的点的轨迹为一椭圆(两点除外)。两定点为

椭圆的顶点,两定点间的距离为长轴长。(-1在y轴上)

例:过点(-8,0),(8,0)的两直线11,12的斜率之积为-3/8,求其交点的轨迹。⒋将圆的横坐标(或纵坐标)拉伸或缩短为原来的m倍,该圆变成椭圆;

⒌连接圆内一定点与圆上任一点的线段的垂直平分线与圆上该点到圆心的连线的交点的轨迹

为一椭圆。方椭圆的长半轴与圆的半径长相等;

⒍两个同心圆较大圆上任一点与圆心的连线与小圆交于一点,从大圆上该点作x轴的垂线,

则过小圆交点向该垂线作垂线,其垂足的点的轨迹为椭圆。

2高考数学常用的圆锥曲线知识点总结

一、椭圆:(1)椭圆的定义:平面内与两个定点f1,f2的距离的和等于常数(大于|其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

二、双曲线:平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线。

三、抛物线:平面内与一定点fl的距离相等的点的轨迹叫做抛物线(定点f不在定直线l上)。

四、方程的曲线:在平面直角坐标系中,如果某曲线c(看作适合某种条件的点的*或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

第3篇:高二数学圆锥曲线方程知识点归纳

1、椭圆:①方程(a0)注意还有一个;②定义:|pf1|+|pf2|=2a③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程(a,b0)注意还有一个;②定义:||pf1|-|pf2||=2a③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|pf|=d焦点f(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

5、注意解析几何与向量结合问题:1、,.(1);(2).

2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos叫做a与b的数量积,记作ab,即

3、模的计算:|a|=.算模可以先算向量的平方

4、向量的运算过程中完全平方公式等照样适用

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除