苏教版幂函数教案

苏教版幂函数教案

  教师在课程准备阶段一定要做好教案设计,这样有利于课程的顺利开展,下面是小编给大家提供的幂函数教案,大家可以参考阅读,更多内容请关注应届毕业生考生网。

  教学目标:

  1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;

  2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;

  3.通过对幂函数的研究,培养学生分析问题的能力.

  教学重点:

  常见幂函数的概念、图象和性质;

  教学难点:

  幂函数的单调性及其应用.

  教学方法:

  采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.

  教学过程:

  一、问题情境

  情境:我们以前学过这样的函数:y=x,y=x2,y=x1,试作出它们的图象,并观察其性质.

  问题:这些函数有什么共同特征?它们是指数函数吗?

  二、数学建构

  1.幂函数的定义:一般的我们把形如y=x(R)的.函数称为幂函数,其中底数x是变量,指数是常数.

  2.幂函数y=x  图象的分布与 的关系:

  对任意的 R,y=x在第I象限中必有图象;

  若y=x为偶函数,则y=x在第II象限中必有图象;

  若y=x为奇函数,则y=x在第III象限中必有图象;

  对任意的 R,y=x的图象都不会出现在第VI象限中.

  3.幂函数的性质(仅限于在第一象限内的图象):

  (1)定点:>0时,图象过(0,0)和(1,1)两个定点;

  ≤0时,图象过只过定点(1,1).

  (2)单调性:>0时,在区间[0,+)上是单调递增;

  <0时,在区间(0,+)上是单调递减.

  三、数学运用

  例1 写出下列函数的定义域,并判断它们的奇偶性

  (1)y= ; (2)y= ; (3)y= ; (4)y= .

  例2 比较下列各题中两个值的大小.

  (1)1.50.5与1.70.5  (2)3.141与π1

  (3)(-1.25)3与(-1.26)3 (4)3 与2

  例3 幂函数y=xm;y=xn;y=x1与y=x在第一象限内图象的排列顺序如图所示,试判断实数m,n与常数-1,0,1的大小关系.

  练习:(1)下列函数:①y=0.2x;②y=x0.2;

  ③y=x3;④y=3•x2.其中是幂函数的有 (写出所有幂函数的序号).

  (2)函数 的定义域是 .

  (3)已知函数 ,当a=   时,f(x)为正比例函数;

  当a=   时,f(x)为反比例函数;当a=   时,f(x)为二次函数;

  当a=   时,f(x)为幂函数.

  (4)若a= ,b= ,c= ,则a,b,c三个数按从小到大的顺序排列为 .

  四、要点归纳与方法小结

  1.幂函数的概念、图象和性质;

  2.幂值的大小比较方法.

  五、作业

  课本P90-2,4,6.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除