高一数学对数的知识点归纳(优秀3篇)
高一数学上册关于对数的知识点归纳以下这3篇高一数学对数的知识点归纳是来自于小编的高一数学log公式大全的范文范本,欢迎参考阅读。
对数的概念 篇一
(1)对数的定义:
如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数。当a=10时叫常用对数。记作x=lg_N,当a=e时叫自然对数,记作x=ln_N.
(2)对数的常用关系式(a,b,c,d均大于0且不等于1):
①loga1=0.
②logaa=1.
③对数恒等式:alogaN=N.
解题方法 篇二
1.在运用性质logaMn=nlogaM时,要特别注意条件,在无M>0的条件下应为logaMn=nloga|M|(n∈N,且n为偶数).
2.对数值取正、负值的规律:
当a>1且b>1,或00;
3.对数函数的。定义域及单调性:
在对数式中,真数必须大于0,所以对数函数y=logax的定义域应为{x|x>0}.对数函数的单调性和a的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论。
4.对数式的化简与求值的常用思路
(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并。
(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算。
方程的根与函数的零点 篇三
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。
即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点。
3、函数零点的求法:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不能用求根公式的。方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
二次函数
(1)△0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点。
(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点。
三人行,必有我师焉。上面就是小编给大家整理的3篇高一数学对数的知识点归纳,希望可以加深您对于写作高一数学log公式大全的相关认知。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除