五年级数学《长方体和立方体的体积练习二》教案

第1篇:五年级长方体和立方体复习数学教案

教学目标

进一步计算长方体和立方体的表面积和体积(容积),并能熟练解答有关的实际问题。

教学重点、难点

重难点:

能熟练解答有关的实际问题。

教具、学具准备

教学过程

备注

一、计算长方体和立方体的表面积和体积。

16米

2.4分米

60厘米

8米

0.2分米

50厘米

6米

1.5分米

20厘米

表面积

体积

棱长

28厘米

1.2米

0.8分米

表面积

体积

二、解答实际问题

1、一个长方体木箱,长8分米,宽6分米,高4.5分米。如果在它的外表涂上油漆(底面不涂),涂的面积有读书平方分米?如果每平方分米用油漆0.25千克,漆这个木箱要用油漆多少千克?

2、把一块棱长是0.4米的立方体钢,锻造成横截面面积是0.08平方米的长方体钢,锻造成的钢有多长?

3、用8个棱长是3厘米的立方体积木,搭成大立方体。求搭成的大立方体的表面积和体积。

4、一个长方体的汽油桶,厂分米,宽3.2分米,高6分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

5、一个立方体油箱,容积是216立方分米。把这一箱油倒入另一个长8分米,宽5分米的长方体油箱内,油深多少分米?

6、一个长方体形状的水池,长60米,宽30米,池内原来水深1.5米。如果用水泵向外排水,每分排水2.5立方米,要求在15小时内把水池中的水排完,可能吗?

(1)学生*完成

(2)小组交流

(3)反馈,说解题思路。

三、思考题

想一想,议一议:怎样求出土豆的体积?

四、总结

课后反思:

在教学时,教师要多创造机会让学生探索比如可以拿一个大土豆,让学生想一想,议一议:怎样求出土豆的体积?在教师的引导下,学生想出了许多解决问题的办法。有的同学说,把土豆煮熟后,挤压成一个长方体,就可求出它的体积;有的同学说,从大土豆切出一个1立方厘米的小土豆,测出它的重量,根据大土豆和小土豆重量之间的倍数关系,可以求出大土豆的体积;有的同学说,把土豆放在长方体水槽里,水上升的体积,就是土豆的体积。

第2篇:五年级数学《长方体与立方体体积计算》教案

教学目标

1、掌握长方体和正方体体积公式的推导,理解长方体和正方体体积都能用底面积乘以高来计算,能应用公式进行计算,并初步解决一些简单的实际问题。

2、在公式的推导过程中培养学生动手*作、抽象概括、归纳推理的能力,并进一步发展空间观念。

3、在教学中渗透知识来源于实践的思想,培养学生学习数学,发现数学的兴趣。

教学重点、难点

重点:

长方体、正方体体积公式的推导。

难点:

1、引导学生积极地去实验、发现长方体的体积公式。

2、理解长方体、正方体的体积为何都能用底面积乘以高来计算。

教具、学具准备

教学过程

一、创设情境

填空:

1、叫做物体的体积。

2、常用的体积单位有:、、。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习——————长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用*将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

这节课在公式的推导过程中培养学生动手*作、抽象概括、归纳推理的能力,并进一步发展空间观念。在教学中渗透了知识来源于实践的思想,培养学生学习数学,发现数学的兴趣,所以学生的学习积极*很高。

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的体积=长×宽×高。

用字母表示:v=a×b×h=abh

应用:出示例1,让学生*解答。

2.小组学习——立方体体积的计算。

思考并回答:长方体和立方体有什么关系?立方体的体积该怎样计算呢?

结论:立方体的体积=棱长×棱长×棱长

用字母表示为:v=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生*做后订正。

3、探索长方体与立方体的通用体积公式

观察:

(1)长方体体积公式中的”长×宽“和正方体体积公式中的”棱长×棱长“各表示什么?

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

思考:

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

v=sh

三、课堂实践

1.做”做一做“的第1题。

(1)先让学生说出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做”做一做“的第2、3、4题。

四、课堂小结

五、作业《作业本》

本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生*作、探究、合作、讨论等多种方式,调动学生积极参与长方体体积公式的推导,最后的结论,都由学生得出,老师只起”导“的作用。

第3篇:五年级数学长方体和正方体的体积教案

教学目标

使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。

教学重点、难点

重难点:

能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。

教具、学具准备

一、基本练习

运用长方体和立方体的体积计算公式,计算长方体和立方体的体积。

1、计算长方体和立方体的体积。

(1)长8米,宽6米,高5米。

(2)棱长40厘米。

学生*完成,反馈。

v=abhv=a3

8×6×5=240(立方米)40×40×40=64000(立方厘米)

2、一根长方体木料,长2米,宽1.5分米,厚2分米。这根木料的体积是多少?

提醒学生注意单位名称的统一,请学生说说”厚“的意思。

学生*完成,反馈。

2米=20分米

20×1.5×2=60(立方分米)

3、一块立方体石料,棱长50厘米。这块石料的体积是多少立方厘米?

学生*完成,反馈。

4、一个底面是长方形的沙坑,底面积是24平方米,深0.5米。需要多少立方米的黄沙才能填满这个沙坑?

学生*完成,反馈时交流解题思路。

24×0.5=12(立方米)

二、综合练习

1、先求体积,再求质量的练习。

一块立方体钢的棱长是2分米,如果1立方分米钢重7.8千克,这块钢重多少千克?

学生*完成,反馈时交流解题思路。

2×2×2=8(立方分米)

7.8×8=62.4(千克)

2、已知体积、长、宽、或底面积,求高的练习。

(1)一个长方体的木箱,长8分米,宽6分米,体积是240立方分米。这个木箱的高是多少分米?

(2)一块立方体石料的体积是512立方厘米,底面积是64平方厘米,这块石料的高是多少厘米?

学生*完成,反馈时交流解题思路。

240÷8÷6=5(分米)

512÷64=8(厘米)

3、小结

三、思考题

把一个立方体的六个面都涂上油漆,如果按面上的线将它分割成27个小立方体,那么,

三面涂油漆的小立方体有()个,

两面涂油漆的小立方体有()个,

一面涂油漆的小立方体有()个,

没有涂油漆的小立方体有()个。

1、弄清题意

2、看立体图想象

3、反馈交流

4、用实物验*

四、学生总结

课后反思:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除