幂函数知识点总结

幂函数知识点总结

  在平时的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。想要一份整理好的知识点吗?以下是小编帮大家整理的幂函数知识点总结,希望对大家有所帮助。

  幂函数知识点总结1

  掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。

  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数无界。

  幂函数知识点总结2

  1、幂函数解析式的右端是个幂的形式。幂的底数是自变量,指数是常数,可以为任何实数;与指数函数的`形式正好相反。

  2、幂函数的图像和性质比较复杂,高考只要求掌握指数为1、2、3、-1、时幂函数的图像和性质。

  3、了解其它幂函数的图像和性质,主要有:

  ①当自变量为正数时,幂函数的图像都在第一象限。指数为负数的幂函数都是过点(1,1)的减函数,以坐标轴为渐近线,指数越小越靠近

  x轴。指数为正数的幂函数都是过原点和(1,1)的增函数;在 x=1的右侧指数越大越远离 x 轴。

  ②幂函数的定义域可以根据幂的意义去求出:要么是x≥0,要么是关于原点对称。前者只在第一象限有图像;后者一定具有奇偶性,利用对称性可以画出二或三象限的图像。注意第四象限绝对不会有图像。

  ③定义域关于原点对称的幂函数一定具有奇偶性。当指数是偶数或分子是偶数的分数时是偶函数;否则是奇函数。

  4、幂函数奇偶性的一般规律:

  ⑴指数是偶数的幂函数是偶函数。

  ⑵指数是奇数的幂函数是奇函数。

  ⑶指数是分母为偶数的分数时,定义域 x>0或 x≥0,没有奇偶性。

  ⑷指数是分子为偶数的分数时,幂函数是偶函数。

  ⑸指数是分子分母为奇数的分数时,幂函数是奇数函数。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除