高一集合的知识点总结

高一集合的知识点总结

  高一集合是数学中的考点,但其实并不是十分的难,属于理论题。下面高一集合的知识点总结是小编为大家带来的,希望对大家有所帮助。

  高一集合的知识点总结

  一.知识归纳:

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的.表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:n,z,q,r,n*

  2.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈a都有x∈b,则a b(或a b);

  2)真子集:a b且存在x0∈b但x0 a;记为a b(或 ,且 )

  3)交集:a∩b={x| x∈a且x∈b}

  4)并集:a∪b={x| x∈a或x∈b}

  5)补集:cua={x| x a但x∈u}

  注意:①? a,若a≠?,则? a ;

  ②若 , ,则 ;

  ③若 且 ,则a=b(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

  4.有关子集的几个等价关系

  ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

  ④a∩cub = 空集 cua b;⑤cua∪b=i a b。

  5.交、并集运算的性质

  ①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

  ③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

  6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  二.例题讲解:

  已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系

  a) m=n p b) m n=p c) m n p d) n p m

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n∈z}

  对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以m n=p,故选b。

  分析二:简单列举集合中的元素。

  解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

  = ∈n, ∈n,∴m n,又 = m,∴m n,

  = p,∴n p 又 ∈n,∴p n,故p=n,所以选b。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合 , ,则( b )

  a.m=n b.m n c.n m d.

  解:

  当 时,2k+1是奇数,k+2是整数,选b

  定义集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为

  a)1 b)2 c)3 d)4

  分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。

  解答:∵a*b={x|x∈a且x b}, ∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。

  变式1:已知非空集合m {1,2,3,4,5},且若a∈m,则6?a∈m,那么集合m的个数为

  a)5个 b)6个 c)7个 d)8个

  变式2:已知{a,b} a {a,b,c,d,e},求集合a.

  解:由已知,集合中必须含有元素a,b.

  集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  评析 本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有 个 .

  已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。

  解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

  ∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a

  ∵a∩b={1} ∴1∈a ∴方程x2+px+q=0的两根为-2和1,

  ∴ ∴

  变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.

  解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

  ∴b={x|x2-5x+6=0}={2,3} ∵a∪b=b ∴

  又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1

  分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。

  解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

  综合以上各式有b={x|-1≤x≤5}

  变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。

  解答:m={-1,3} , ∵m∩n=n, ∴n m

  ①当 时,ax-1=0无解,∴a=0 ②

  综①②得:所求集合为{-1,0, }

  已知集合 ,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠φ,求实数a的取值范围。

  分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

  解答:(1)若 , 在 内有有解

  令 当 时,

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程 有实根,求实数a的取值范围。

  解答:

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

  三.随堂演练

  选择题

  1. 下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

  ⑥0 ⑦ {0} ⑧ { }其中正确的个数

  (a)4 (b)5 (c)6 (d)7

  2.集合{1,2,3}的真子集共有

  (a)5个 (b)6个 (c)7个 (d)8个

  3.集合a={x } b={ } c={ }又 则有

  (a)(a+b) a (b) (a+b) b (c)(a+b) c (d) (a+b) a、b、c任一个

  4.设a、b是全集u的两个子集,且a b,则下列式子成立的是

  (a)cua cub (b)cua cub=u

  (c)a cub= (d)cua b=

  5.已知集合a={ }, b={ }则a =

  (a)r (b){ }

  (c){ } (d){ }

  6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为

  {1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{ }是有限集,正确的是

  (a)只有(1)和(4) (b)只有(2)和(3)

  (c)只有(2) (d)以上语句都不对

  7.设s、t是两个非空集合,且s t,t s,令x=s 那么s∪x=

  (a)x (b)t (c)φ (d)s

  8设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为

  (a)r (b) (c){ } (d){ }

  填空题

  9.在直角坐标系中,坐标轴上的点的集合可表示为

  10.若a={1,4,x},b={1,x2}且a b=b,则x=

  11.若a={x } b={x },全集u=r,则a =

  12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是

  13设集合a={ },b={x },且a b,则实数k的取值范围是。

  14.设全集u={x 为小于20的非负奇数},若a (cub)={3,7,15},(cua) b={13,17,19},又(cua) (cub)= ,则a b=

  解答题

  15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1}, 若a b={-3},求实数a。

  16(12分)设a= , b= ,

  其中x r,如果a b=b,求实数a的取值范围。

  四.习题答案

  选择题

  1 2 3 4 5 6 7 8

  c c b c b c d d

  填空题

  9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}

  解答题

  15.a=-1

  16.提示:a={0,-4},又a b=b,所以b a

  (ⅰ)b= 时, 4(a+1)2-4(a2-1)<0,得a<-1

  (ⅱ)b={0}或b={-4}时, 0 得a=-1

  (ⅲ)b={0,-4}, 解得a=1

  综上所述实数a=1 或a -1

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除