新人教版八年级物理教案五篇(实用)

作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

新人教版八年级物理教案篇一

(一)知识网络

托勒密:地心说

人类对行 哥白尼:日心说

星运动规 开普勒 第一定律(轨道定律)

行星 第二定律(面积定律)

律的认识 第三定律(周期定律)

运动定律

万有引力定律的发现

万有引力定律的内容

万有引力定律 f=g

引力常数的测定

万有引力定律 称量地球质量m=

万有引力 的理论成就 m=

与航天 计算天体质量 r=r,m=

m=

人造地球卫星 m=

宇宙航行 g = m

mr

ma

第一宇宙速度7.9km/s

三个宇宙速度 第二宇宙速度11.2km/s

地三宇宙速度16.7km/s

宇宙航行的成就

(二)、重点内容讲解

计算重力加速度

1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。

g=g =6.67_ _ =9.8(m/ )=9.8n/kg

即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。

2 即算地球上空距地面h处的重力加速度g’。有万有引力定律可得:

g’= 又g= ,∴ = ,∴g’= g

3 计算任意天体表面的重力加速度g’。有万有引力定律得:

g’= (m’为星球质量,r’卫星球的半径),又g= ,

∴ = 。

星体运行的基本公式

在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。

1 向心力的六个基本公式,设中心天体的质量为m,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =g =ma=m =mr =mr =mr =m v。

2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。

向心力: =g ,f∝ ;

向心加速度:a=g , a∝ ;

线速度:v= ,v∝ ;

角速度: = , ∝ ;

周期:t=2 ,t∝ 。

3 v与 的关系。在r一定时,v=r ,v∝ ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、 也随之变化。根据,v∝ 和 ∝ ,这时v与 为非线性关系,而不是正比关系。

一个重要物理常量的意义

根据万有引力定律和牛顿第二定律可得:g =mr ∴ .这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。

估算中心天体的质量和密度

1 中心天体的质量,根据万有引力定律和向心力表达式可得:g =mr ,∴m=

2 中心天体的密度

方法一:中心天体的密度表达式ρ= ,v= (r为中心天体的半径),根据前面m的表达式可得:ρ= 。当r=r即行星或卫星沿中心天体表面运行时,ρ= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期t,就可简捷的估算出中心天体的平均密度。

方法二:由g= ,m= 进行估算,ρ= ,∴ρ=

(三)常考模型规律示例总结

1. 对万有引力定律的理解

(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。

(2)公式表示:f= 。

(3)引力常量g:①适用于任何两物体。

②意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。

③g的通常取值为g=6。67×10-11nm2/kg2。是英国物理学家卡文迪许用实验测得。

(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。

②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。

③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)

(5)万有引力具有以下三个特性:

①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。

②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。

③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。

〖例1〗设地球的质量为m,地球的半径为r,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:

a、地球对物体的引力大于物体对地球的引力。

物体距地面的高度为h时,物体与地球间的万有引力为f= 。

物体放在地心处,因r=0,所受引力无穷大。

d、物体离地面的高度为r时,则引力为f=

〖答案〗d

〖总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。

(2)f= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。

(3)f= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项c的推理是错误的。

〖变式训练1〗对于万有引力定律的数学表达式f= ,下列说法正确的是:

a、公式中g为引力常数,是人为规定的。

b、r趋近于零时,万有引力趋于无穷大。

c、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。

d、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。

〖答案〗c

2. 计算中心天体的质量

解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。

式中m为中心天体的质量,sm为运动天体的质量,a为运动天体的向心加速度,ω为运动天体的角速度,t为运动天体的周期,r为运动天体的轨道半径.

(1)天体质量的估算

通过测量天体或卫星运行的周期t及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有 ,得

注意:用万有引力定律计算求得的质量m是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.

用上述方法求得了天体的质量m后,如果知道天体的半径r,利用天体的体积 ,进而还可求得天体的密度. 如果卫星在天体表面运行,则r=r,则上式可简化为

规律总结:

掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.

物体在天体表面受到的重力也等于万有引力.

注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.

(2)行星运行的速度、周期随轨道半径的变化规律

研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:

根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即

(3)利用万有引力定律发现海王星和冥王星

〖例2〗已知月球绕地球运动周期t和轨道半径r,地球半径为r求(1)地球的质量?(2)地球的平均密度?

〖思路分析〗

设月球质量为m,月球绕地球做匀速圆周运动,

则: ,

(2)地球平均密度为

答案: ;

总结:①已知运动天体周期t和轨道半径r,利用万有引力定律求中心天体的质量。

②求中心天体的密度时,求体积应用中心天体的半径r来计算。

〖变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为r,探测器运行轨道在其表面上空高为h处,运行周期为t。

(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为t1,则行星平均密度为多少?

答案:(1) ; (2)

3. 地球的同步卫星(通讯卫星)

同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期t=24h,同步卫星又叫做通讯卫星。

同步卫星必定点于赤道正上方,且离地高度h,运行速率v是确定的。

设地球质量为 ,地球的半径为 ,卫星的质量为 ,根据牛顿第二定律

设地球表面的重力加速度 ,则

以上两式联立解得:

同步卫星距离地面的高度为

同步卫星的运行方向与地球自转方向相同

注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别

在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的r,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。

地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。

赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度

;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,

它的周期可以由下式求出:

求得 ,代入地球的半径r与质量,可求出地球近地卫星绕地球的运行周期t约为84min,此值远小于地球自转周期,而向心加速度 远大于自转时向心加速度。

已知地球的半径为r=6400km,地球表面附近的重力加速度 ,若发射一颗地球的同步卫星,使它在赤道上空运转,其高度和速度应为多大?

:设同步卫星的质量为m,离地面的高度的高度为h,速度为v,周期为t,地球的质量为m。同步卫星的周期等于地球自转的周期。

由①②两式得

又因为 ③

由①③两式得

:此题利用在地面上 和在轨道上 两式联立解题。

下面关于同步卫星的说法正确的是( )

a .同步卫星和地球自转同步,卫星的高度和速率都被确定

b .同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小

c .我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低

d .同步卫星的速率比我国发射的第一颗人造卫星的速率小

:acd

三、第七章机械能守恒定律

(一)、知识网络

(二)、重点内容讲解

1.机车起动的两种过程

一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力f=p/v随v增大,f减小.根据牛顿第二定律a=(f-f)/m=p/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至f=f'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=p/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(f-f)/m 即f=f时 保持vm匀速

f =p/v v达到vm

变加速直线运动 匀速直线运动

这一过程的v-t关系如图所示

车以恒定的加速度起动

由a=(f-f)/m知,当加速度a不变时,发动机牵引力f恒定,再由p=f?v知,f一定,发动机实际输出功p 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至f=f时,a=0 ,车速达到值vm= p额 /f,此后匀速运动

在p增至p额之前,车匀加速运动,其持续时间为

t0 = v0/a= p额/f?a = p额/(ma+f’)a

(这个v0必定小于vm,它是车的功率增至p额之时的瞬时速度)计算时,先计算出f,f-f’=ma ,再求出v=p额/f,最后根据v=at求t

在p增至p额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.

匀加速直线运动 变加速直线运动

匀速直线运动 v

vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这一点在计算题目中极易出错.

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率p和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑.

2. 动能定理

内容:合力所做的功等于物体动能的变化

表达式:w合=ek2-ek1=δe或w合= mv22/2- mv12/2 。其中ek2表示一个过程的末动能mv22/2,ek1表示这个过程的初动能mv12/2。

物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。

说明:动能定理的理解及应用要点

动能定理的计算式为标量式,v为相对与同一参考系的速度。

动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.

动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。

若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。

3.动能定理的应用

一个物体的动能变化δek与合外力对物体所做的功w具有等量代换关系,若δek?0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若δek?0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若δek=0,表示合外力对物体所做的功等于零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有f、l、m、v、w、ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。

动能定理解题的基本思路

选取研究对象,明确它的运动过程。

分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。

明确物体在过程始末状态的动能ek1和ek2。

列出动能定理的方程w合=ek2-ek1,及其他必要的解题过程,进行求解。

4.应用机械能守恒定律的基本思路:

应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒条件,机械能就守恒。而且机械能守恒定律,只涉及物体第的初末状态的物理量,而不须分析中间过程的复杂变化,使处理问题得到简化,应用的基本思路如下:

选取研究对象-----物体系或物体。

根据研究对象所经右的物理过程,进行受力、做功分析,判断机械能是否守恒。

恰当地选取参考平面,确定对象在过程的初末状态时的机械能。(一般选地面或最低点为零势能面)

根据机械能守恒定律列方程,进行求解。

注意:(1)用机械能守恒定律做题,一定要按基本思路逐步分析求解。

(2)判断系统机械能是否守怛的另外一种方法是:若物体系中只有动能和势能的相互转化而无机械能与其它形式的能的转化,则物体系机械能守恒。

(三)常考模型规律示例总结

1. 机车起动的两种过程

(1)一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力f=p/v随v增大,f减小.根据牛顿第二定律a=(f-f)/m=p/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至f=f'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=p/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(f-f)/m 即f=f时 保持vm匀速

f =p/v v达到vm

变加速直线运动 匀速直线运动

(2)车以恒定的加速度起动

由a=(f-f)/m知,当加速度a不变时,发动机牵引力f恒定,再由p=f?v知,f一定,发动机实际输出功p 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至f=f时,a=0 ,车速达到值vm= p额 /f,此后匀速运动

在p增至p额之前,车匀加速运动,其持续时间为

t0 = v0/a= p额/f?a = p额/(ma+f’)a

(这个v0必定小于vm,它是车的功率增至p额之时的瞬时速度)计算时,先计算出f,f-f’=ma ,再求出v=p额/f,最后根据v=at求t

在p增至p额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.

匀加速直线运动 变加速直线运动

匀速直线运动 v

这一过程的关系可由右图所示 vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这 v0

一点在计算题目中极易出错.

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率p和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑.

一汽车的额定功率为p0=100kw,质量为m=10×103,设阻力恒为车重的0..1倍,取

若汽车以额定功率起①所达到的速度vm②当速度v=1m/s时,汽车加速度为少?③加速度a=5m/s2时,汽车速度为多少?g=10m/s2

若汽车以的加速度a=0.5m/s2起动,求其匀加速运动的最长时间?

①汽车以额定功率起动,达到速度时,阻力与牵引力相等,依题,所以 vm=p0/f=p0/f=p0/0.1mg=10m/s

②汽车速度v1=1m/s时,汽车牵引力为f1

f1=p0/v1==1×105n

汽车加速度为 a1

a1=(f1-0.1mg)/m=90m/s2

③汽车加速度a2=5m/s2时,汽车牵引力为f2

f2-0.1mg=ma2 f2=6×104n

汽车速度v2=p0/f2=1.67m/s

汽车匀加速起动时的牵引力为:

f=ma+f=ma+0.1mg =(10×103×0.5+10×103×10)n=1.5×104n

达到额定功率时的速度为:vt=p额/f=6.7m/s

vt即为匀加速运动的末速度,故做匀加速运动的最长时间为:

t=vt/a=6.7/0.5=13.3s

1 ①vm=10m/s ②a1=90m/s2 ③v2=1.67m/s

2. t=13.3s

⑴机车起动过程中,发动机的功率指牵引力的功率,发动机的额定功率指的是该机器正常工作时的输出功率,实际输出功率可在零和额定值之间取值.所以,汽车做匀加速运动的时间是受额定功率限制的.

⑵飞机、轮船、汽车等交通工具匀速行驶的速度受额定功率的限制,所以要提高速度,必须提高发动机的额定功率,这就是高速火车和汽车需要大功率发动机的原因.此外,要尽可能减小阻力.

⑶本题涉及两个速度:一个是以恒定功率起动的速度v1,另一个是匀加速运动的速度v2,事实上,汽车以匀加速起动的过程中,在匀加速运动后还可以做加速度减小的运动,由此可知,v2>v1

汽车发动机的额定功率为60kw,汽车质量为5t,运动中所受阻力的大小恒为车重的0.1倍.

若汽车以恒定功率启动,汽车所能达到的速度是多少?当汽车以5m/s时的加速度多大?

若汽车以恒定加速度0.5m/s2启动,则这一过程能维持多长时间?这一过程中发动机的牵引力做功多少?

(1)12m/s , 1.4m/s2 (2) 16s , 4.8×105j

2. 动能定理

内容和表达式

合外力所做的功等于物体动能的变化,即

w = ek2-ek1

动能定理的应用技巧

一个物体的动能变化δek与合外力对物体所做的功w具有等量代换关系。若δek>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若δek<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若δek=0,表示合外力对物体所做的功为零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有f、s、m、v、w、ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态的动能变化去考虑,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。当题给条件涉及力的位移,而不涉及加速度和时间时,用动能定理求解比用牛顿第二定律和运动学公式求解简便用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力做功过程、曲线运动等。

3. 机械能守恒

系统内各个物体若通过轻绳或轻弹簧连接,则各物体与轻弹簧或轻绳组成的系统机械能守恒。

我们可以从三个不同的角度认识机械能守恒定律:

从守恒的角度来看:过程中前后两状态的机械能相等,即e1=e2;

从转化的角度来看:动能的增加等于势能的减少或动能的减少等于势能的增加,△ek=-△ep

从转移的角度来看:a物体机械能的增加等于b物体机械能的减少△ea=-△eb

解题时究竟选取哪一个角度,应根据题意灵活选取,需注意的是:选用(1)式时,必须规定零势能参考面,而选用(2)式和(3)式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量。

〖例2〗如图所示,一轻弹簧固定于o点,另一端系一重物,将重物从与悬点在同一水平面且弹簧保持原长的a点无初速度地释放,让它自由摆下,不计空气阻力,在重物由a点向最低点的过程中,正确的说法有:

a、重物的重力势能减少。 b、重物的机械能减少。

c、重物的动能增加,增加的动能等于重物重力势能的减少量。

d、重物和轻弹簧组成的每每机械能守恒。

〖答案〗abd

新人教版八年级物理教案篇二

一、教学目标

1.理解功的概念:

(1)知道做机械功的两个不可缺少的因素,知道做功和“工作”的区别;

(2)知道当力与位移方向的夹角大于90°时,力对物体做负功,或说物体克服这个力做了功。

2.掌握功的计算:

(1)知道计算机械功的公式w=fscosα;知道在国际单位制中,功的单位是焦耳(j);知道功是标量。

(2)能够用公式w=fscosα进行有关计算。

二、重点、难点分析

1.重点是使在理解力对物体做功的两个要素的基础上掌握机械功的计算公式。

2.物体在力的方向上的位移与物体运动的位移容易混淆,这是难点。

3.要使学生对负功的意义有所认识,也较困难,也是难点。

三、教具

带有牵引细线的滑块(或小车)。

四、主要教学过程

(一)引入新课

功这个词我们并不陌生,初中中学习过功的一些初步知识,今天我们又来学习功的有关知识,绝不是简单地重复,而是要使我们对功的认识再提高一步。

(二)教学过程设计

1.功的概念

先请同学回顾一下初中学过的与功的概念密切相关的如下两个问题:什么叫做功?谁对谁做功?然后做如下并板书:

(1)如果一个物体受到力的作用,并且在力的方向上发生了位移,物理学中就说这个力对物体做了功。

然后演示用水平拉力使滑块沿拉力方向在讲桌上滑动一段距离,并将示意图画到黑板上,如图1所示,与同学一起讨论如下问题:在上述过程中,拉力f对滑块是否做了功?滑块所受的重力mg对滑块是否做了功?桌面对滑块的支持力n是否对滑块做了功?强调指出,分析一个力是否对物体做功,关键是要看受力物体在这个力的方向上是否有位移。至此可作出如下总结并板书:

(2)在物理学中,力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。

2.功的公式

就图1提出:力f使滑块发生位移s这个过程中,f对滑块做了多少功如何计算?由同学回答出如下计算公式:w=fs。就此再进一步提问:如果细绳斜向上拉滑块,如图2所示,这种情况下滑块沿f方向的位移是多少?与同学一起分析并得出这一位移为s cos α。至此按功的前一公式即可得到如下计算公式:

w=fscosα

再根据公式w=fs做启发式提问:按此公式考虑,只要f与s在同一直线上,乘起来就可以求得力对物体所做的功。在图2中,我们是将位移分解到f的方向上,如果我们将力f分解到物体位移s的方向上,看看能得到什么结果?至此在图2中将f分解到s的方向上得到这个分力为fcosα,再与s相乘,结果仍然是w=fscosα。就此指出,计算一个力对物体所做的功的大小,与力f的大小、物体位移s的大小及f和s二者方向之间的夹角α有关,且此计算公式有普遍意义(对计算机械功而言)。至此作出如下板书:

w=fscosα

力对物体所做的功,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积。

接下来给出f=100n、s=5m、α=37°,与同学一起计算功w,得出w=400n?m。就此说明1n?m这个功的大小被规定为功的单位,为方便起见,取名为焦耳,符号为j,即1j=1n?m。最后明确板书为:

在国际单位制中,功的单位是焦耳(j)

1j=1n?m

3.正功、负功

(1)首先对功的计算公式w=fscosα的可能值与学生共同讨论。从cos α的可能值入手讨论,指出功w可能为正值、负值或零,再进一步说明,力f与s间夹角α的取值范围,最后总结并作如下板书:

当0°≤α<90°时,cosα为正值, w为正值,称为力对物体做正功,或称为力对物体做功。

当α=90°时,cosα=0,w=0,力对物体做零功,即力对物体不做功。

当90°<α≤180°时,cosα为负值, w为负值,称为力对物体做负功,或说物体克服这个力做功。

(2)与学生一起先讨论功的物理意义,然后再说明正功、负功的物理意义。

①提出功是描述什么的物理量这个问题与学生讨论。结合图1,使学生注意到力作用滑块并持续使滑块在力的方向上运动,发生了一段位移,引导学生认识其特征是力在空间位移上逐渐累积的作用过程。然后就此提出:这个累积作用过程到底累积什么?举如下两个事例启发学生思考:

a.一辆手推车上装有很多货物,搬运工推车要用很大的力。向前推一段距离就要休息一会儿,然后有了力气再推车走。

b.如果要你将重物从一楼向六楼上搬,搬运过程中会有什么感觉?

首先使学生意识到上述两个过程都是人用力对物体做功的过程,都要消耗体能。就此指出做功过程是能量转化过程,做功越多,能量转化得越多,因而功是能量转化的量度。能量是标量,相应功也是标量。板书如下:

功是描述力在空间位移上累积作用的物理量。功是能量转化的量度,功是标量。

②在上述对功的意义认识的基础上,讨论正功和负功的意义,得出如下认识并板书:

正功的意义是:力对物体做功向物体提供能量,即受力物体获得了能量。

负功的意义是:物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量。

4.例题讲解或讨论

例1.课本p.110上的〔例题〕是功的计算公式的应用示范。分析过程中应使学生明确:推力f对箱子所做的功,实际上就是推力f的水平分力fcosα对箱子所做的功,而推力 f的竖直分力fsinα与位移s的方向是垂直的,对箱子不做功。

例2.如图3所示,abcd为画在水平地面上的正方形,其边长为a,p为静止于a点的物体。用水平力f沿直线 ab拉物体缓慢滑动到b点停下,然后仍用水平力f沿直线bc拉物体滑动到c点停下,接下来仍用水平力f沿直线cd拉物体滑动到d点停下,最后仍用水平力f沿直线da拉物体滑动到a点停下。若后三段运动中物体也是缓慢的,求全过程中水平力f对物体所做的功是多少?

此例题先让学生做,然后找出一个所得结果是w=0的学生发言,此时会有学生反对,并能说出w=4fa才是正确结果。让后者讲其思路和做法,然后总结,使学生明确在每一段位移a中,力f都与a同方向,做功为fa,四个过程加起来就是4fa。强调:功的概念中的位移是在这个力的方向上的位移,而不能简单地与物体运动的位移画等号。要结合物理过程做具体分析。

例3.如图4所示,f1和f2是作用在物体p上的两个水平恒力,大小分别为:f1=3n,f2=4n,在这两个力共同作用下,使物体p由静止开始沿水平面移动5m距离的过程中,它们对物体各做多少功?它们对物体做功的代数和是多少?f1、f2的合力对p做多少功?

此例题要解决两个方面的问题,一是强化功的计算公式的正确应用,纠正学生中出现的错误,即不注意力与位移方向的分析,直接用3n乘5m、4n乘5m这种低级错误,引导学生注意在题目没有给出位移方向时,应该根据动力学和运动学知识作出符合实际的判断;二是通过例题得到的结果,使学生知道一个物体所受合力对物体所做的功。等于各个力对物体所做的功的代数和,并从合力功与分力功所遵从的运算法则,深化功是标量的认识。

解答过程如下:位移在f1、f2方向上的分量分别为s1=3m、s2=4m,f1对p做功为9j,f2对p做功为16j,二者的代数和为25j。f1、f2的合力为5n,物体的位移与合力方向相同,合力对物体做功为w=fs=5n×5m=25j。

例4.如图5所示。a为静止在水平桌面上的物体,其右侧固定着一个定滑轮o,跨过定滑轮的细绳的p端固定在墙壁上,于细绳的另一端q用水平力f向右拉,物体向右滑动s的过程中,力f对物体做多少功?(上、下两段绳均保持水平)

本例题仍重点解决计算功时对力和位移这两个要素的分析。如果着眼于受力物体,它受到水平向右的力为两条绳的拉力,合力为2f。因而合力对物体所做的功为w=2fs;如果着眼于绳子的q端,即力f的作用点,则可知物体向右发主s位移过程中,q点的位移为2s,因而力f拉绳所做的功w=f?2s=2fs。两种不同处理方法结果是相同的。

五、课堂小结

1.对功的概念和功的物理意义的主要内容作必要的重复(包括正功和负功的意义)。

2.对功的计算公式及其应用的主要问题再作些强调。

六、说明

1.考虑到功的定义式w=fscosα与课本上讲的功的公式相同,特别是对式中s的解释不一,有物体位移与力的作用点的位移之分,因而没有给出明确的功的定义的

新人教版八年级物理教案篇三

【学习目标】

1、知道什么是圆周运动,什么是匀速圆周运动

2、理解什么是线速度、角速度和周期

3、理解线速度、角速度和周期之间的关系

4.能在具体的情境中确定线速度和角速度与半径的关系

【学习重点】

1、理解线速度、角速度和周期

2、什么是匀速圆周运动

3、线速度、角速度及周期之间的关系

【学习难点】

对匀速圆周运动是变速运动的理解

分析下图中,a、b两点的线速度有什么关系?匀速圆周运动中,匀速的含义是 。匀速圆周运动的线速度是不变的吗?分析情况下,轮上各点的角速度有什么关系?

探究四、1)线速度与角速度有什么关系?怎样推导他们的关系?

2)匀速圆周运动的den线速度,角速度,周期,频率之间有什么关系》试推导其关系。

1.有两个走时准确的始终,分针的长度分别是8cm和10cm,历经15分钟,问两分针的针尖位置的平均线速度是多大?

【当堂检测】----有效训练、反馈矫正

1、下列关于匀速圆周运动的说法中,正确的是()

a.是速度不变的运动 b.是角速度不变的运动

c.是角速度不断变化的运动 d.是相对圆心位移不变的运动

2. 关于匀速圆周运动的判断,下列说法中正确的是

a.角速度不变 b.线速度不变 c.向心加速度不变 d周期不变

3 一个质点做匀速圆周运动时,它在任意相等的时间内( )

a 通过的弧长相等; b 通过的位移相等

c转过的角度相等; d 速度的变化相等.

4、一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是()

a.轨道半径越大线速度越大 b.轨道半径越大线速度越小

c.轨道半径越大周期越大 d.轨道半径越大周期越小

5. 关于角速度和线速度,说法正确的是

a半径一定,角速度与线速度成反比

b半径一定,角速度与线速度成正比

c.线速度一定,角速度与半径成正比

d.角速度一定,线速度与半径成反比

6、如图所示,一个环绕中心线ab以一定的角速度转动,下列说法正确的是()

a.p、q两点的角速度相同

b.p、q两点的线速度相同

c.p、q两点的角速度之比为∶1

d.p、q两点的线速度之比为∶1

新人教版八年级物理教案篇四

教学设计思路:

本节课要求学生会计算人造卫星的环绕速度,知道第二宇宙速度和第三宇宙速度.本节是第五节,万有引力定律、圆周运动、天体运动都已经讲过,从知识上讲学生运用牛顿第二定律直接推导出卫星的速度并不是一件困难的事情.实际上学生遇到卫星问题时总是感到困难和无从下手.究其根源是因为学生对地球、卫星的空间关系不清楚,学生无法从自己站立的一个小小的角落体会巨大空间中发生的事情.因此,用各种视频、课件和图片帮助学生建立空间的概念是十分必要的,有了空间的图景,对问题的认识和思考就有了依托.所以,本节课我使用了大量的图片和视频来模拟、展示,让学生有比较深刻的感性认识.

设计理念

通过对前几节知识的学习,学生对曲线运动的特点、万有引力定律已有一定的了解.在此基础上,教师通过设计问题情境,引导学生探究,获得新知识.重视科学跟生活、跟社会的联系,让学生体会物理学就在身边.体会生活质量与物理学的依存关系,体会科学是迷人的、是改变世界的神奇之手.

学情分析:

尽管学生对天体运动的知识储备不足,猜想可能缺乏科学性,语言表达也许欠妥,但只要学习始终参与到学习情境中,激活思维,大胆猜想,敢于表达,学生就能得到发展和提高.

教学目标 :

一、知识与能力

了解人造卫星的发射与运行原理,知道三个宇宙速度的含义,会推导第一宇宙速度.

了解人造卫星的运行原理,认识万有引力定律对科学发展所起的作用,培养学生科学服务于人类的意识.

二、途径与方法

学习科学的思维方法,发展思维的独立性,提高发散思维能力、分析推理能力和语言表达能力.

三、情感态度与价值观

在主动学习、合作探究的过程中,体验愉悦的学习氛围,在探究中不断获得美的感受不断进步.

学习科学,热爱科学,增强民族自信心和自豪感.

教学准备:

多媒体电脑及图片.

教学重点难点:

重点:

1.第一宇宙速度的推导.

2.运行速率与轨道半径之间的关系

难点:

沿椭圆轨道运行的卫星按照圆周运动处理,卫星的环绕速度是最小发射速度.

教学过程:

教师活动

教学内容

学生活动

引入新课

展示新闻和图片

1957?年?10?月?4?日,前苏联成功地发射了第一颗人造地球卫星,从而开创了人类航天的新纪元.

1961?年?4?月?12?日,前苏联成功地发射了第一艘“东方号”载人飞船,尤里?·?加加林成为第一位航天员,揭开了人类进入太空的序幕.

人类进入了航天时代.这节课我们就来学习人造地球卫星方面的基本知识.

看屏幕

听讲解

§ 6.5????宇宙航行

进行新课

问:离地面一定高度的物体以一定的初速度水平射出,由于重力作用,物体将做平抛运动,即最终要落回地面.但如果射出的速度增大,会发生什么情况呢?

思考

演示牛顿设想原理图

一、人造地球卫星?由于抛出速度不同,物体的落点也不同.当抛出速度达到一定大小,物体就不会落回地面,而是在引力作用下绕地球旋转,成为绕地球运动的人造卫星.?

那么,速度多大时,物体将不会落回地面而成为绕地球旋转的卫星呢?

观察、分析

引导学生讨论

展示课件并讲解

二、宇宙速度?

【板书】?1.?第一宇宙速度?(?环绕速度?)?v1=?7.9km/s

请学生根据所学知识,推导第一宇宙速度的另一种表达式: 推导:地面附近重力提供向心力, 所以 将?r=6.37×106m ,?g=9.8m/s2代入,求出第一宇宙速度仍为?7.9km /s. 如果人造地球卫星进入轨道的水平速度大于?7.9km /s,而小于?11.2km /s,它绕地球运动的轨道就不是圆,而是椭圆.当物体的速度等于或大于?11.2km /s时,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造卫星.所以,?11.2km /s?是卫星脱离地球的速度,这个速度叫作第二宇宙速度,也称脱离速度速.

【板书】?2.?第二宇宙速度(脱离速度)?v2=?11.2km /s

达到第二宇宙速度的物体要受太阳引力的束缚,要使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去,必须使它的速度等于或大于?16.7km /s,这个速度叫作第三宇宙速度,也称逃逸速度.【板书】?3.?第三宇宙速度(逃逸速度)?v3=?16.7km/s

【板书】4地球同步卫星.

人造地球卫星的种类很多,有一种特别的卫星叫地球同步卫星

(?1?)同步卫星的高度是确定的:?h=?36000 km.

(?2?)理解同步卫星“同步”的意义.

(?3?)探究同步卫星的位置.

2.观看视频:同步卫星的轨道以及同步卫星的发射

讨论并推导

观察、思考

说明特点

了解卫星的发射和回收

视频和图片

巩固练习

1.?一颗在圆形轨道上运行的人造地球卫星,轨道半径为?r,它的线速度大小为?v,问?:?当卫星的轨道半径增大到?2r?时,它的线速度是多大?重力变为原来的多少倍?

2.?天文台测得一颗卫星沿半径为?r?的圆形轨道绕某行星转动,周期为?t,求卫星的向心加速度和行星的质量.

新人教版八年级物理教案篇五

磁场对电流的作用?教案

一、教学目标

1.掌握磁场对电流作用的计算方法。

2.掌握左手定则。

二、重点、难点分析

1.重点是在掌握磁感应强度定义的基础上,掌握磁场对电流作用的计算方法,并能熟练地运用左手定则判断通电导线受到的磁场力的方向。

2.计算磁场力时,对通电导线在磁场中的不同空间位置,正确地运用不同的三角函数和题目提供的方位角来计算是难点。

三、主要教学过程

(一)引入新课

复习提问:

1.磁感应强度是由什么决定的?

答:磁感应强度是由产生磁场的场电流的大小、分布和空间位置确定的。

2.磁感应强度的定义式是什么?

3.磁感应强度的定义式在什么条件下才成立?

成立。

4.垂直磁场方向放入匀强磁场的通电导线长l=1cm,通电电流强度i=10a,若它所受的磁场力f=5n,求(1)该磁场的磁感应强度b是多少?(2)若导线平行磁场方向。

答:因通电导线垂直磁场方向放入匀强磁场,所以根据磁感应强度的定义式

5.若上题中通电导线平行磁场方向放入该磁场中,那么磁场的磁感应强度是多大?通电导线受到的磁场力是多少?

答:当电流仍为i=10a,l‖b时,该处磁感应强度不变,仍为b=0.5t,而通电导线所受磁场力f为零。

(二)教学过程设计

1.磁场对电流的作用(板书)

我们已经了解到通电直导线垂直磁场方向放入磁场,它将受到磁场力的作用,根据磁感应强度的定义式可以得出:

f=bil

当通电导线平行磁场方向放入磁场中,它所受的磁场力为零。看来运用f=bil来计算磁场对电流的作用力的大小是有条件的,必须满足l⊥b。

磁场力方向的确定,由左手定则来判断。

提问:如果通电导线与磁感应强度的夹角为θ时,如图1所示磁场力的大小是多少?怎样计算?

让学生讨论得出正确的结果。

我们已知,当l⊥b时,通电导线受磁场力,f=bil,而当l∥b时f=0,启发学生将b分解成垂直l的b⊥和平行l的b∥,因平行l的b∥对导线作用力为零,所以实际上磁场b对导线l的作用力就是它的垂直分量b⊥对导线的作用力,如图2所示。即

f=ilb⊥=ilbsinθ

磁场对电流的作用力——安培力(板书)

大小:f=ilbsinθ(θ是l、b间夹角)

方向:由左手定则确定。

黑板上演算题:下列图3中的通电导线长均为l=20cm,通电电流强度均为i=5a,它们放入磁感应强度均为b=0.8t的匀强磁场中,求它们所受磁场力(安培力)。

让五个同学上黑板上做,其他同学在课堂练习本上做,若有做错的,讲明错在哪儿,正确解应是多少,并把判断和描述磁场力方向的方法再给学生讲解一下(如图4示)。

例1.两根平行输电线,其上的电流反向,试画出它们之间的相互作用力。

分析:如图5所示,a、b两根输电线,电流方向相反。通电导线b处在通电导线a产生的磁场中,受到a产生的磁场的磁场力作用;通电导线a处在通电导线b产生的磁场中,受到b产生的磁场的磁场力作用。我们可以先用安培定则确定通电导线b在导线a处的磁场方向bb,再用左手定则确定通电导线a受到的磁场力fa的方向;同理,再用安培定则先确定通电导线a在导线b处的磁场方向ba,再用左手定则确定通电导线b受到的磁场力fb的方向。经分析得出反向电流的两根平行导线间存在的相互作用力是斥力。

完成上述分析,可以让同学在课堂作业本上画出电流方向相同的平行导线间的相互作用力,自己得出同向电流的两根平行导线间存在的相互作用是引力。

例2.斜角为θ=30°的光滑导体滑轨a和b,上端接入一电动势e=3v、内阻不计的电源,滑轨间距为l=10厘米,将一个质量为m=30g,电阻r=0.5ω的金属棒水平放置在滑轨上,若滑轨周围存在着垂直于滑轨平面的匀强磁场,当闭合开关s后,金属棒刚好静止在滑轨上,如图6,求滑轨周围空间的磁场方向和磁感应强度的大小是多少?

解:合上开关s后金属棒上有电流流过,且金属棒保持静止,由闭合电路欧姆定律

金属棒静止在滑轨上,它受到重力mg1和滑轮支持力n的作用,因轨道光滑,二力金属棒不可能平衡,它必然还受到垂直于滑轨平面的磁场的安培力作用才能平衡,根据题意和左手定则判断出,磁场方向垂直滑轨面斜向下,金属棒受到磁场的安培力沿斜面向上,如图7所示,由进一步受力分析得出,若金属棒平衡,则它受到的安培力f应与重力沿斜面向下的分量mgsinθ大小相等,方向相反:

f-mgsinθ=0……①

又 f=bil代入①得bil=mgsinθ

(三)课堂小结

1.当通电直导线垂直磁场方向放入磁场中时受到磁场的安培力,f=bil;当通电直导线平行磁场方向放入磁场中时受到磁场的安培力为零。

2.当通电直导线在磁场中,导线与磁场方向间的夹角为θ时,通电导线受到磁场的安培力f=ilbsinθ。

3.磁场对通电直导线的安培力的方向,用左手定则来判断。(其内容在书中p.226)

课外作业:物理第三册(选修)p.227练习二。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除