最新三位数除以两位数竖式(11篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
三位数除以两位数竖式篇一
从课堂效果和作业情况反映出来的问题主要有这样几个方面:
1、商的位置的确定:当练习中同时出现商可能是两位数也有可能是三位数时,有些学生的错误率就比较高,有的明明被除数的百位不够商,却还要去商;有的确定十位商后,余数与个位合起来除,学生不知道商几。
2、在试商的过程中不知道商几。
3、在乘的过程中经常把商和想出来的整十数相乘。
4、学生第一次除后,减法不彻底(连续退位减法不熟练),导致后面计算出错。
5、学生做题目时,余数忘写,横式答案抄错。
学生出现这些问题,主要是因为教师过高估计学生的已有知识,为了节约时间,来创设有利于学生自主探究的学习情境,而抛弃了复习旧知。没有对旧的唤醒,学习效果不理想,只能课内损失课外补。而其课堂计算训练的量不够,课堂上因一些情境让计算时间流失。部分学生基础不好,速度慢;部分学生注意力不够集中。没有参与探究活动中。
针对这些情况,我采取了以下几个措施:
1、及时复习“两位数除以一位数除法笔算,并将计算方法与“三位数除以一位数(商是两位数的除法笔算)相联系,使学生体会到“商是两位数”就需要试商两次,就需要经历两次估商的过程。
2、教给同学们除法竖式的口诀:一想(把除数四舍五入想成整十数),二商,三乘(和原来的除数相乘),四减(注意连续退位)。
3、做好批改记录,针对个别学生遇到困难或疑惑的地方给予一对一指导和帮助。
4、通过教材中的题组对比让学生明确商的位置取决于被除数的大小。
5、汇集学生错误,全班会诊“找错”。通过反例让学生寻找错误,在改正错误的过程中建立正确的思考方法,形成计算策略。
三位数除以两位数竖式篇二
《三位数除以两位数》教学反思
三位数除以两位数是在学生学习了三位数除以整十数的基础上进行教学的,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教学中安排了几组例题,分层次、分阶段分化了重点,分散了难点。这节课体现了以下及方面的优点:
一、让学生在计算中养成心算估算的能力。
由于刚刚开始学习四舍五入试商怕学生不知道把除数看成接近哪个整十数来试商,所以在做除法竖式时都要求学生把除数接近哪个整十数记在心里,帮助学生试商。这个方法很好,学生试商也方便多了,避免了学生试商写好了以后用商去乘与除数接近的那个整十数,这样一是避免学生无意的出错,二是让学生养成心算、估算的能力,培养学生的计算能力。
二、让学生在情境中体验和理解数学。
在计算教学中,情境的创设往往能激起学生征服的欲望。计算流于生活,根据学生的好胜心,设三组信息,巧妙的将四舍法求商,分解成三步,让学生在用口算,心算的凑巧求商,慢慢延伸成初商过大需调小这种装况,矛盾的产生就能有思维的撞击,激发了学生解决问题的满腔热情,这样的情境创设让课堂变得勃勃生机。
三、知识技能目标在分析对比中落实。
课上适时的引导学生从已有的知识经验出发,智慧地利用对比的方法,将四舍五入法求商的重难点有机的嵌入学生默默的学习中,从而形成了自己的知识。从准备练习入手,( )里最大能填几、找两位数的`近似数、口算等都隐含了之后学习内容的手笔;在学习了四舍法求商之后,放手让学生自学,五入法求商是在学生自学的基础上学会的,先扶后放,也让学生的能力得到了锻炼。
四、练习层次在地递进中进行。
练习内容安排的不是很多,但题题奔重难点,通过练习更好的掌握计算方法。通过解决密切联系实际的简单问题,培养学生综合应用所学知识的能力,这样的安排既用足了教材的练习资源,还使学生在单一到综合,由简单应用到灵活应用的练习过程中掌握了本节课的基本知识,同事又培养了基本的数学思考能力。
三位数除以两位数竖式篇三
四年级上学期开学第一章学的是《三位数除以两位数》,虽然三年级的时候学习过,但是对于四年级的《三位数除以两位数》这一单元的学习,学生学习起来仍然很困难。可以用一句话来概括“教师教得吃力,学生学得痛苦”。
第一个课时讲的是三位数除以整十数,这个难度不是很大,也教会了学生正确判断商是几位数,但在后面的学习内容中教学“试商和调商”时,学生就感觉有些无处下手。一道计算题,全班的差距很大,做的快的与做的慢的能差好几分钟。计算历来是学生的难点,既枯燥又容易出错的题目。怎样在孩子初学时掌握一些技巧?
一、每节课前5分钟说口算练习题(10题左右),提高学生口算能力。口算是计算中的基础,通过口算熟练掌握乘法口诀,退位减及乘法进位。
二、除法的竖式计算相对来说比较抽象,为避免学生产生对抗情绪,在练习时也采取多种形式,如请学生上黑板板演(每个小组派1—2名代表)进行比赛,给学生展示的机会,然后优生批阅。
3、加强估算练习,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
三位数除以两位数的教学不是一朝一夕的事情,在以后的教学中,可以采用穿插、点滴渗透本单元的除法知识,相信通过日积月累的计算积累,学生的计算的准确率和速度都会有很大的提高。
三位数除以两位数竖式篇四
在前两节课的基础上,今天我教学《三位数除以两位数的笔算》本节课是在学生掌握了除数是整十数的笔算方法的基础上学习的。
本课内容的教学知识目标是通过具体情境让学生在独立探索的过程中经历三位数除以两位数试商的方法,会用“四舍五入”法进行试商。
在教学新课时,我通过课本主题图创设情境,激发学生兴趣,引出了数学问题,并引导学生列出算式。下面就是如何引导学生主动的试商问题了。我利用沈重予老师对我的提示,将试商的教学和方法分五步进行:第一步,让学生按教材提示尝试计算192÷32,初步体会试商方法。例题在列出算式后,告诉学生“32接近30,把32看作30来试商”。并在竖式中除数的上面写出“30”,然后让学生独立完成192÷32的计算。在这一步的教学中要注意两点:
(1)把除数32看成30试商的意思是,把192÷30的商作为192÷32的商进行计算;
(2)商“6”必须和除数32相乘,不能和30相乘。第二步,让学生通过验算证实这样的试商方法是合理的、可行的。第三步是“试一试”,让学生独立计算192÷39,被除数192不变,除数从32变成39,引导学生主动地把39看成40试商,再次经历把除数看成最接近的整十数试商的过程,体会试商方法。第四步,让学生回顾例题和“试一试”的试商,初步总结“除数是两位数的除法可以怎样试商”。第五步,在“想想做做”里安排说试商方法的练习,促进方法的内化。
在教学中,我只通过一部分必要的点拨和提出一些挑战性的问题,没有更多的说教,反而学生在我讲的每一步时,都自信地说:“我们自己能行!”虽然,在课堂作业仍出现类似“商6跟30相乘”的现象,我认为这对小部分孩子来说需要一个过程,他们会通过晚上的练习及明天的练习课,证明他们也能行!
三位数除以两位数竖式篇五
三位数除以两位数教学反思
虽然三年级的时候学习过《两位数除以一位数》,但是对于四年级的《三位数除以两位数》这一单元的学习,学生学习起来仍然很吃力。可以用一句话来概括“教师教得痛苦,学生学得痛苦”。
第一个课时讲的是三位数除以整十数,这个难度不是很大,也教会了学生正确判断商是几位数,但在后面的学习内容中教学“试商和调商”时,学生就感觉有些无处下手。一道计算题,全班的差距很大,做的快的与做的慢的能差好几分钟。
从课堂效果和作业情况反映出来的问题主要有这样几个方面:
1、商的位置的确定:当练习中同时出现商可能是两位数也有可能是一位数时,有些学生的错误率就比较高,有的明明被除数的十位不够商,却还要去商;有的确定十位商后,余数与个位合起来除,学生不知道商几;遇到不够商1要商0时,学生遗漏;有些学生把除数看着一位数,把末尾的0忽略不看,直接用一位数除法计算了。
2、在试商的过程中不知道商几。
3、在乘的过程中经常把初商和想出来的整十数相乘。
4、学生第一次除后,减法不彻底(连续退位减法不熟练),导致后面计算出错。
5、学生做题目时,余数忘写,横式答案抄错。
我想出现这些原因在所难免,从我本人来讲,我布置学生预习,及时掌控学生可能的错误,每天认真备课,把握课的重难点和目标,上课上的很慢生怕后进生不会,可还是出现这些问题,只能说:部分学生基础不好,速度慢;部分学生注意力不够集中。比如祁同学,上课不听,课间找不到人,作业拖拉,其实他完全能跟上。再比如张同学、赵同学、施同学基础和智力都有点滞后。
针对这些情况,从思想态度上我首先告诫自己:一理解二放松,谋事在人,成事在天。其次,我采取了以下几个措施:
1、每天课前2分钟口算(12题),提高学生口算能力。口算是计算中的基础环节,通过口算熟练掌握乘法口诀,退位减及乘法进位。
2、加强估算,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
3、教给同学们除法竖式的口诀:一想(把除数四舍五入想成整十数),二商,三乘(和原来的除数相乘),四减(注意连续退位)。
4、做好批改记录,针对个别学生遇到困难或疑惑的地方给予一对一指导和帮助。
5、汇集学生错误,全班会诊“找错”。通过反例让学生寻找错误,在改正错误的过程中建立正确的思考方法,形成计算策略。
三位数除以两位数竖式篇六
三位数除以两位数是在学生学习了三位数除以整十数的基础上进行教学的,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教学中安排了几组例题,分层次、分阶段分化了重点,分散了难点。这节课体现了以下及方面的优点:
一、让学生在计算中养成心算估算的能力。
由于刚刚开始学习四舍五入试商怕学生不知道把除数看成接近哪个整十数来试商,所以在做除法竖式时都要求学生把除数接近哪个整十数记在心里,帮助学生试商。这个方法很好,学生试商也方便多了,避免了学生试商写好了以后用商去乘与除数接近的那个整十数,这样一是避免学生无意的出错,二是让学生养成心算、估算的能力,培养学生的计算能力。
二、让学生在情境中体验和理解数学。
在计算教学中,情境的创设往往能激起学生征服的欲望。计算流于生活,根据学生的好胜心,设三组信息,巧妙的将四舍法求商,分解成三步,让学生在用口算,心算的凑巧求商,慢慢延伸成初商过大需调小这种装况,矛盾的产生就能有思维的撞击,激发了学生解决问题的满腔热情,这样的情境创设让课堂变得勃勃生机。
三、知识技能目标在分析对比中落实。
课上适时的引导学生从已有的知识经验出发,智慧地利用对比的方法,将四舍五入法求商的重难点有机的嵌入学生默默的学习中,从而形成了自己的知识。从准备练习入手,里最大能填几、找两位数的近似数、口算等都隐含了之后学习内容的手笔;在学习了四舍法求商之后,放手让学生自学,五入法求商是在学生自学的基础上学会的,先扶后放,也让学生的能力得到了锻炼。
四、练习层次在地递进中进行。
练习内容安排的不是很多,但题题奔重难点,通过练习更好的掌握计算方法。通过解决密切联系实际的简单问题,培养学生综合应用所学知识的能力,这样的安排既用足了教材的练习资源,还使学生在单一到综合,由简单应用到灵活应用的练习过程中掌握了本节课的基本知识,同事又培养了基本的数学思考能力。
三位数除以两位数竖式篇七
本节课学习的是三位数除以两位数(用“四舍法”调商)。四舍调商对于学生来说是一个比较难掌握的知识点,计算量比较大。我先让学生试着解决书本的问题,在学生根据题意列出算式“272÷34”之后,先让学生利用之前学过的知识尝试进行计算,提示学生,如果计算过程中遇到了困难,解决不了的话就停下来,然后举手。几分钟后,很多同学举起了手。通过提问,我了解到学生在计算的过程中发现商与除数的积(9×34=306)大于被除数(272),出现了不够减的情况。在此基础上我引导学生发现其中的问题:商9偏大了,应改小。然后集体交流得出初商后的结果不一定是正确的,还需要调商的大小,此时的矛盾情境也引发了学生讨论问题、解决问题的愿望。通过讨论,一方面让学生找到了矛盾的关键所在,另一方面也明确了调商的方法(当商与除数的乘积大于被除数时,说明初商偏大,需要把商调小)。这是用四舍法调商时经常会出现的一种正常现象。
调商的方法大部分学生都很快掌握,但是教学的过程中又遇到了难题,有些学生的乘法口诀背得不够熟练,初商不能很快判断出来,所以计算速度很慢,没有达到预期的教学效果。
在计算过程中学生经常会出现的问题有:
1、列竖式时数位没有对齐,商的位置不对。
2、商与除数相乘时,有的学生将商与接近除数的整十数相乘。
3、最后一位不够除没有商0。
4、做完题后没有认真检查的习惯,如余数比除数大却没有发现。横式上等号后面忘记写答案,或者写答案时忘记写余数。
在今后的数学教学中,要多加强对学生计算能力的训练,提高做题的速度。培养学生养成认真做题认真审题的好习惯。
三位数除以两位数竖式篇八
通过对本节课的教学,我对本课的备课及课堂教学反思如下:
1、设计追求简约
在备课过程中,我只是借助教学用书分析了教材,明确了教材的重点与难点及练习的编者意图;然后从网络上下载了两篇教学设计,发现设计都很繁琐,不合简约要求,于是根据教学目标及简真课堂的三个环节领受、领悟、提升,围绕教学重点与难点设计了较为简洁、清晰的教学流程。用课件辅助教学,细想也只能起到小黑板的作用,也就是根据试商情况写出正确的商和改错两题,便于集体校对。简约的设计让我在课堂教学中能清晰地把握教学流程,较好地突出教学重点与难点。
2、过程力显扎实
我们都知道,试商和调商的过程对学生的口算能力要求较高,口算能力直接关系到笔算的正确率与速度。课始我安排了本节课要用到的相关口算与最大能填几,目的是为了给学生的试商打下基础。由于该班学生是本人刚接的,一些训练还只是刚刚开始,有些学生一时还不能适应,这些都有待今后的持续训练。
本课重点是让学生经历试商,发现问题后再调商,感悟调商过程的必要,领会商变大的原因,掌握调商的方法。这一过程经历了尝试、合作、交流,再独立笔算,再小结等环节。力求突出并突破教学的重点与难点。
课后,本人感觉学生是领悟了调商,但多数学生是重复耗费了更多的时间,因为学生在尝试做272÷34时,就已经知道将初商改小后重新计算,并算出了正确的结果。在巡视时,发现了这一情况,我将原先设计的教学流程作了一定调整,但惟恐学生难以掌握调商的算理,接着还是按照预设的流程进行教学并在练习的过程中所用时间较多,导致后面教学时间就显得比较紧张。
3、结果争达高效
高效课堂是我们追求的共同目标。本课的试商速度与准确率直接影响到调商,是本课取得高效的最关键环节。前几课,学生已经掌握了用四舍五入法试商的方法,而且商不需要进行调整,学生已经习惯了在竖式上直接试商,因此本堂课学生试商后发现商嫌大就擦掉后重新计算,这样不但影响了计算速度练习书面上也欠美观。于是我让学生们讨论怎样试商会更好,开始没有几人能想到其它方法,在我的提示之下,一个学生说可以在草稿上试商,可是他还是用的除法竖式。我再次提示,是否可以只用初商乘以除数的方法来试商,乘法竖式是否比除法更方便,于是孩子们才想到应该是这样的。但是,由于时间等因素,我并没有让学生们作以乘法替代除法进行试商,然后调商的练习,多数学生还是用的除法竖式进行试商,整个计算过程没有能明显加快速度,也没能特别提醒学生或鼓励学生试商时不要急躁,要耐心细致地进行试商调商,使得计算能够正确。在草稿纸上列出整齐而准确的过程,需加强训练。总之,要真正达到简真课堂的目标,我的课堂教学还需要继续努力。
三位数除以两位数竖式篇九
本节课学习的三位数除以两位数(四舍调商)是学生在学习和掌握计算方法和试商法则的基础上进行教学的。
四舍调商对于学生来说是一个比较难掌握的知识点,整节课计算的比较多。我先让学生试着解决书本的问题,在学生根据题意列出算式“272÷34”之后,就直接先让学生利用之前学过的知识尝试进行计算,学生在试商的过程中发现商与除数的积(9×34=306)大于被除数(272),出现不够减的情况,从而让学生发现其中的问题:商9偏大了,应改小。然后集体交流得出初商后的结果不一定是正确的,还需要调商的大小,这一步就是我们今天要学习的新知识——调商。此时的矛盾情境也引发了学生讨论问题、解决问题的愿望。通过讨论,一方面不难让学生找到矛盾的关键所在,另一方面也明确了调商的方法。这是用四舍调商时经常会出现的一种正常现象。同时还要让学生弄清楚算理,明确每步的意义,由于本节课的教学内容比较多,因此课堂作业有好多同学都没有完成,可能除法计算相对乘法来说比较难,而有些学生的乘法基础又打得不牢,所以计算速度较慢,因此这部分学生应该要先把乘法好好学习,特别是要把乘法口诀背得非常熟练,并且课后还要加强练习,提高计算能力。
在计算过程中学生经常会出现的问题有:
1、列竖式时数位没有对齐,商的位置不对。
2、商与除数相乘时,有的学生将商与接近除数的整十数相乘。
3、最后一位不够除没有商0。
4、三位数除以整十数口算能力不强。
5、做完题后没有检查的习惯,如余数比除数大这么明显的错误却没有发现。
6、不会验算,如有些同学在验算的过程中,直接写出得数却没有乘法计算的过程,有余数时,和余数相加的时候数位对齐时出错。
三位数除以两位数竖式篇十
虽然三年级的时候学习过《两位数除以一位数》,但是对于四年级的《三位数除以两位数》这一单元的`学习,学生学习起来仍然很吃力。可以用一句话来概括“教师教得痛苦,学生学得痛苦”。
第一个课时讲的是三位数除以整十数,这个难度不是很大,也教会了学生正确判断商是几位数,但在后面的学习内容中教学“试商和调商”时,学生就感觉有些无处下手。一道计算题,全班的差距很大,做的快的与做的慢的能差好几分钟。计算历来是学生的难点,既枯燥又容易出错的题目。
怎样在孩子初学时掌握一些技巧?
1、每天课前2分钟写口算练习册(10题左右),提高学生口算能力。口算是计算中的基础环节,通过口算熟练掌握乘法口诀,退位减及乘法进位。
2、除法的竖式计算相对来说比较枯燥,为避免学生产生厌恶情绪,在练习时也采取多种形式,如请学生上黑板板演(每个小组派1―2名代表)进行比赛,给学生展示的机会。
3、加强估算,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
在以后的教学中,可以采用穿插、点滴渗透本单元的除法知识,相信通过日积月累的计算积累,学生的计算的准确率和速度都会有很大的提高。
三位数除以两位数竖式篇十一
《四舍调商》数学教学反思
说实话,有点担心今天的“调商除法”。它比前几天单纯的除法计算要难一些。
还是按照惯例,让孩子们对272÷34进行了自主探究,和预设的一样,孩子们会遇到障碍,商9是有问题的。孩子们能很自然地想到将商调小,然后往下计算。
简单记录这样一个交流花絮。
我问:“在计算的过程中,你遇到了什么麻烦?”
大家争先恐后地回答:“商9是不行的。”
我就问:“商9不行,那该怎么办?”
黄佳玲:“改小一些,商8。”
我再问:“为什么?”
顾拓:“34乘9的积超过了被除数272,减不够,只能商8了。”
我又问:“知道为什么会出现这样的情况吗?”
我这么一问,许多孩子露出了为难的表情,确实,这个问题有一定的思维含量,它不是单纯的技术问题,而是计算的.本质。
几个孩子表达了自己的想法,但都没有很准确地直指本质,我试图引导他们从题意去思考,假设如果每人9本书的话,34乘9得306本,超出了原有的本数,显然违背了我们的题意,从现实生活的尴尬聚焦于眼前的除法计算,孩子们会自然接受:初商偏大时,被除数就不够减,必须将初商调小,才能顺利往下算。所以,“偏大就调小”这样一个思想,此刻已经深入孩子们的心了。
与孩子们达成了共识,我让孩子们继续观察这种除法的除数,除数中又隐藏着怎样的玄机。我是想让孩子们明白:把除数看小,初商就可能偏大,偏大就要调小。这实在有些抽象,孩子们不容易理解,我感觉自己也讲得不透彻,这是我上完课后最需要反思的地方,求助中。
关于计算的方法,孩子们掌握得还行,在作业中,正确率也算让人满意,只是不够熟练,尤其遇到乘法计算那一步,孩子们的速度很慢,却也是最容易出错的那一步。我想,对于速度暂且不作严格要求,等孩子们将方法牢固且内化后再慢慢提高吧。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除