数学家的故事(精选13篇)
数学家的故事(精选13篇)
多伟大的数学家有一些传奇的故事,在这些故事中,不是无意义的琐碎,也不是一些让人盲目追求的癖好。而且一些高贵的品质和令人称艳的能力,让我们对其敬仰,以下是小编整理的数学家的故事,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学家的故事 篇1
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的'校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个搞笑的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都能够表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时光他最爱到图书馆,不仅仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
“老师,我没有胡闹”
数学家的故事 篇2
有一次,他跟邻居家的孩子一齐出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他十分想去看个究竟。于是他就对邻居家的孩子说:
“那边可能有好玩的,我们过去看看好吗?”
邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”
胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。
两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得十分搞笑。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”
邻居家的孩子迷惑地望着他说:"我怎样能明白呢?你怎样会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”
华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”
邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再思考这个问题吧!但是你要是能当上数学家,恐怕就要日出西山了。”
华罗庚不顾邻家孩子的`嘲笑,坚定地说:“以后我必须能想出办法来的。”
当然,计算出这些石人、石马的重量,对于之后果真成为数学家的华罗庚来讲,根本不在话下。
金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一齐赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,立刻坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,十分虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就能够问神问卦,求医求子了。
华罗庚感到好笑,他自我却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:
“孩子,你为什么不拜,这菩萨可灵了。”
“菩萨真有那么灵吗?”华罗庚问道。
一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。”
“菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。
庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见“菩萨”能动了,他从立刻下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原先百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。
华罗庚最后解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们最后恍然大悟了。从此,人们都对这个孩子刮目相看,再也无人喊他“罗呆子”了。正是华罗庚这种打破砂锅问到底的精神。
数学家的故事 篇3
笛卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科学发展起到了巨大的作用。
笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的'地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改善了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
数学家的故事 篇4
7岁那年,小高斯上小学了。教师名字叫布特纳,是当地小有名气的“数学家”。这位来自城市的青年教师,总认为乡下的孩子都是笨蛋,自我的才华无法施展。三年级的一次数学课上,布特纳对孩子们又发了一通脾气,然后,在黑板上写下了一个长长的.算式:81297+81495+81693+……+100701+100899=?
“哇!这是多少个数相加呀?怎样算呀?”学生们害怕极了,越是紧张就越是想不出怎样计算。
布特纳很得意。他明白,像这样后一个数都比前一个数大198的100个数相加,这些调皮的学生即使整个上午都乖乖地计算,也不会算出结果。
不料,不一会儿,小高斯却拿着写有答案的小石板过来了,说:“老师,我算完了。”布特纳连头都没抬,生气地说:“去去,不要胡闹。谁想胡乱写一个数交差,可得留意!”说完,挥动了一下他那铁锤似的拳头。
但是小高斯却坚持不走,说:“老师,我没有胡闹。”并把小石板轻轻地放在讲台上。布特纳看了一眼,惊讶得说不出话来,没想到,这个10岁的孩子居然这么快就算出了正确的答案。
原先,小高斯不是像其他孩子那样一个数一个数地加,而是细心地观察,动脑筋,找规律。他发现一头一尾两个数依次相加,每次加得的和都是182196,求50个182196的和能够用乘法很快算出。
小高斯的难以置信的数学天赋,使布特纳既佩服,又内疚。从此,他再也不轻视穷人的孩子了。他给小高斯买来了许多数学书,并让他的年轻的助手巴蒂尔帮忙小高斯学数学。
数学家的故事 篇5
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,之后的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有职责。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,务必振兴科学。数学是科学的开路先锋,为了发展科学,务必学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅仅为了摆脱个人困境,而是要拯救中国广大的'苦难民众;读书,不仅仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只明白读书、思考、解题、演算,4年中演算了上万道数学习题。此刻温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。应对困境,苏步青的回答是“吃苦算得了什么,我甘情绪愿,因为我选取了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心。
数学家的故事 篇6
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自我学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,此刻电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还就应处罚他们,使自我在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,明白老师又会在这天捉这些学生处罚了。
“你们这天替我算从1加2加3一向到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
但是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,但是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自我以前算过,得到的数也是5050,这个8岁的小鬼怎样这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的.方法。高斯的发现使老师觉得羞愧,觉得自我以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自我进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
数学家的故事 篇7
2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275—前194)。
埃拉托色尼博学多才,他不仅仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光能够一向照到井底,因而这时候所有地面上的直立物都就应没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物构成的夹角所造成。从地球是圆球与阳光直线传播这两个前提出发,从假想的地心向塞恩城与亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物构成的'夹角。按照相似三角形的比例关联,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,与实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说与智慧。
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小与海陆分布。埃拉托色尼还用经纬网绘制地图,最早将物理学的原理与数学方法相结合,创立了数理地理学。
数学家的故事 篇8
张衡,公元78年出生,是东汉时期著名的发明家,天文学家。关于张衡,有个很有意思的小故事。
张衡小时候特别聪明,而且刻苦好学,所以六岁的时候就能做出漂亮的文章。
当时乡人都对张衡赞叹有加,这就招来了王充的嫉妒。王充是屠户家的儿子,平时不喜欢学习,整天带着一群小孩乱跑,今天拿土坷垃砸张家狗,明天拿碎石头砸王家鸡。有次他看到张衡坐在门口看书,捡起一个石子就砸过去。全神贯注的张衡丝毫没有防备,被石头砸了个正着。
张衡哇地一声大哭起来,一边哭一边拿起小板凳要打王充。闻声出来的奶奶制止了张衡,听完张衡哭诉后,奶奶平心静气的说,孩子,不管别人做了什么,咱都不要丧失理智。你拿个板凳会打坏人的。张衡满肚子委屈,依旧哭个不停。奶奶把张衡拉到家里,关上门,耐心的对张衡说,读书使人明理,你可以教王充读书呀,这样王充就变成好孩子了。
几天后,张衡主动找到王充。王充吓了一跳,以为张衡到门上寻仇,往后面一退,摆出一副打架的样子。张衡笑了,说,我不是来找你打架的,我看你整天怪无聊的.,你到我家我们一起读书吧。
王充脸上的紧张一扫而光,变成了难以置信,让我去你家读书?我跟个野孩子一样。张衡上前拉住王充的手,笑眯眯地说,走吧,看书可比打架有意思多了。
数学家的故事 篇9
欧几里得是第一个把几何学系统化、条理化、科学化的人。多少个世纪以来,中国在技术方面一向领先于欧洲,但是从来没有出现一个能够同欧几里得对应的中国数学家。其结果是,中国从未拥有过欧洲人那样的数学理论体系(中国人对实际的几何知识理解得不错,但他们的几何知识从未被提高到演绎体系的高度)。
关于欧几里得的生平,没有详细的.记载。然而,却流传着许多关于他的搞笑的故事……
欧几里得的名声越来越大,以致连亚历山大国王也想赶时髦,学点几何学。于是,国王便把欧几里得请进王宫,讲授几何学。谁知刚学了一点,国王就显得很不耐烦,觉得太吃力了。国王问欧几里得:“学习几何学,有没有简单一点的途径。一学就会?”
欧几里得笑道:“陛下,很抱歉,在学习科学的时候,国王与普通百姓是一样的。科学上没有专供国王行走的捷径。学习几何,人人都要独立思考。就像种庄稼一样,不耕耘,就不会有收获。
前来拜欧几里得为师的人越来越多。有的人是来凑热闹的,看到别人学几何,他也学几何。一位学生曾这样问欧几里得:“老师,学习几何会使我得到什么好处?”欧几里得思索了一下,请仆人拿点钱给这位学生,冷冷地说道:“看来,你拿不到钱,是不肯学习几何学的!”
学习数学没有捷径,只有透过独立思考,才能真正掌握它;学习数学却有方法,掌握方法,事半功倍。
数学家的故事 篇10
莱布尼兹(1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
一、生平事迹
莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的着述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。
20岁时,莱布尼兹转入阿尔特道夫大学。这一年,他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。1673年,莱布尼兹被推荐为英国皇家学会会员。此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。
1716年11月14日,莱布尼兹在汉诺威逝世,终年70岁。
二、始创微积分
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早能够追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673~1676年间也发表了微积分思想的论着。以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼兹大体上完成的,但不是由他们发明的”(恩格斯:《自然辩证法》)。
然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我证明我已经明白确定极大值和极小值的方法、作切线的.方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不一样,除了他的措词和符号而外。”(但在第三版及以后再版时,这段话被删掉了。)因此,之后人们公认牛顿和莱布尼兹是各自独立地建立微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自我创立微积分学的思路,说明了自我成就的独立性。
三、高等数学上的众多成就
莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为之后的数学理论奠定了基础。
莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在之后的研究中,莱布尼兹证明了自我结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。
四、丰硕的物理学成果
莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一齐运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了“关于笛卡儿和其他人在自然定律方面的显着错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时光和运动的区别一样,但是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。能够说莱布尼兹的物理学研究一向是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。
五、中西文化交流之倡导者
莱布尼兹对中国、的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向上帝会来华传教士格里马尔迪了解到了许多有关中国的状况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料修改成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的礼貌仿佛这天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一礼貌古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备透过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时光哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在那里,莱布尼兹不仅仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。
莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。他的虚心好学、对中国文化平等相待,不含“欧洲中心论”偏见的精神尤为难能可贵,值得后世永远敬仰、效仿。
数学家的故事 篇11
祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他个性爱好研究数学,也钟爱研究天文历法,经常观测太阳与星球运行的状况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,能够更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的.结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时刻)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。(企业标语大全)
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不就应改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不好拿空话吓唬人嘛。”宋孝武帝想帮忙戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他以前对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926与3。1415927之间,成为世界上最早将圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天能够航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
数学家的故事 篇12
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去领悟。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞与卡农的门生,钻研《几何原本》。
之后阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他透过超多实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法与计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的'大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积与它的体积,分别为球表面积与体积的。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线与直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数与算术级数求与的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形与立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德将数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线与双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴与短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。透过研究发现,这些信件与传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正正因他的杰出贡献,美国的E。T。贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿与高斯。但是以他们的宏伟业绩与所处的时代背景来比较,或拿他们影响当代与后世的深邃久远来比较,还应首推阿基米德。
数学家的故事 篇13
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行,在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的'话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
泰勒斯最先证明了如下的定理:
1、圆被任一直径二等分。
2、等腰三角形的两底角相等。
3、两条直线相交,对顶角相等。
4、半圆的内接三角形,一定是直角三角形。
5、如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。
这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理,相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除