数学《一元二次方程》教案设计(通用16篇)

数学《一元二次方程》教案设计(通用16篇)

  在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《一元二次方程》教案设计,希望对大家有所帮助。

  数学《一元二次方程》教案设计 篇1

  教学目标

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学重点和难点:

  重点:一元二次方程的概念和它的一般形式。

  难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

  教学建议:

  1.教材分析:

  1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

  2)重点、难点分析

  理解一元二次方程的定义:

  是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

  (1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

  (2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

  (3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

  数学《一元二次方程》教案设计 篇2

  一、教材分析

  1、教材的地位和作用

  一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

  2、教学目标及确立目标的依据

  九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

  知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

  能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

  德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

  3、重点,难点及确定重难点的依据

  “一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

  二、教材处理

  在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

  三、教学方法和学法

  教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

  四、教学手段

  采用投影仪

  五、教学程序

  1、新课导入:

  (1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)

  (2)列方程解应用题的方法,步骤?(并引例打基础)

  课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)

  设出求知数,列出代数式,并根据等量关系列出方程

  数学《一元二次方程》教案设计 篇3

  一、教材分析

  1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

  2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2

  b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

  3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

  4、教学目标:

  (1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

  (2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

  5、数学思想:由感性认识到理性认识。

  6、教学重点:

  (1)发现根的判别式。

  (2)用根的判别式解决实际问题。

  7、教学难点:

  根的判别式的发现

  8、教法:启导、探究

  9、学法:合作学习与探究学习

  10、教学模式:引导——发现式

  二、教学过程

  (一)自习回顾,引入新课

  1、师生共同回顾:一元二次方程的解法

  2、解下列一元二次方程。

  (1)x2 -1=0 (2)x2 -2x =-1

  (3)(x+1)2- 4=0 (4)x2 +2x+2=0

  3、为什么会出现无解?

  (二)探索

  1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

  2、观察(x+ ) 2= 2 在什么情况下成立?

  3、学生分组讨论。

  4、猜测?

  5、发现了什么?

  6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

  7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,_________________________

  8、总结:

  (1)比较分析学生的讨论分析结果。

  (2)由学生总结。

  (3)教师根据学生总结情况补充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

  (1)当b2-4ac> 0时,_______________________

  (2)当b2-4ac= 0时,_________________________

  (3)当b2-4ac< 0时,________________________

  (三)应用新知:

  1、不解方程判定下列一元二次方程根的情况。

  (1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____

  (2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____

  (3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____

  2、根据根的情况,求字母系数的取值范围。

  例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

  (1)读题分析:

  A、二次项系数是什么? a=_______

  B、一次项系数是什么? b=_______

  C、常数项是什么? c=_______

  (2)建立等式,根据有个常数根 b2-4ac=0

  (3)由学生完成解题过程后教师评价

  3、证明

  例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

  (四)练习

  已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

  (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

  三、作业

  1、把例1、例2整理在作业本上。

  2、有余力的同学把练习题整理在作业本。

  四、教学后记

  数学《一元二次方程》教案设计 篇4

  教学内容: 12.1 用公式解一元二次方程(一)

  教学目标:

  知识与技能目标:

  1.使学生了解一元二次方程及整式方程的意义;

  2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

  过程与方法目标:

  1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;

  2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

  情感与态度目标:

  由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.,数学教案-用公式法解一元二次方程。

  教学重、难点与关键:

  重点:一元二次方程的意义及一般形式.

  难点:正确识别一般式中的“项”及“系数”。

  教辅工具:

  教学程序设计:

  程序

  教师活动

  学生活动

  备注

  创设

  问题

  情景

  1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

  2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

  教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

  板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

  学生看投影并思考问题

  通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

  探究新知

  1

  1.复习提问

  (1)什么叫做方程?曾学过哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含义?

  (3)什么叫做分式方程?

  2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

  引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

  整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

  一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

  3.练习:指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x2;

  (2)7x2+6=2x(3x+1);

  数学《一元二次方程》教案设计 篇5

  一、出示学习目标:

  1.继续感受用一元二次方程解决实际问题的过程;

  2.通过自学探究掌握裁边分割问题。

  二、自学指导:(阅读课本P47页,思考下列问题)

  1.阅读探究3并进行填空;

  2.完成P48的思考并掌握裁边分割问题的特点;

  3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。

  探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

  分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7

  设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:

  由中下层学生口答书中填空,老师再给予补充。

  思考:如果换一种设法,是否可以更简单?

  设正中央的长方形长为9acm,宽为7acm,依题意得

  9a·7a=(可让上层学生在自学时,先上来板演)

  2.P48-49第8、9题中下层学生在自学完之后先板演

  效果检测时,由同座的同学给予点评与纠正

  9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)

  注意点:要善于利用图形的平移把问题简单化!

  三、当堂训练:

  1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?

  (只要求设元、列方程)

  2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?

  数学《一元二次方程》教案设计 篇6

  一、教学目标

  1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

  2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

  3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

  二、教学重难点

  重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

  难点:找对题目中的数量关系从而列出一元二次方程。

  三、教学过程

  (一)导入新课

  师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?

  生:老师,这是雷锋叔叔。

  师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?

  生:是的老师。

  师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?

  生:想。

  师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

  (二)新课教学

  师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

  (下去巡视)

  (三)小结作业

  师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

  四、板书设计

  五、教学反思

  数学《一元二次方程》教案设计 篇7

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

  数学《一元二次方程》教案设计 篇8

  教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学难点和难点:

  重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

  难点:一元二次方程的含义.

  教学过程设计

  一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:1.要解决这个问题,就要求出铁片的长和宽。

  2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

  3.让学生自己列出方程( x(x十5)=150 )

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

  二、新课

  1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:(2)x2=4

  (2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。

  4.一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

  ax2+bx+c=0 (a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

  强化概念(课本P6)

  1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

  (4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

  课堂小节

  (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);

  (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

  (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

  数学《一元二次方程》教案设计 篇9

  教材分析

  一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。

  学情分析

  1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。

  2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。

  教学目标

  一、知识目标

  1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识

  2、理解一元二次方程的概念

  3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项

  二、能力目标

  1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力

  2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.

  四、情感目标

  1、培养学生主动探究知识、自主学习和合作交流的意识

  2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识

  教学重点和难点

  教学重点: 一元二次方程的概念和它的一般形式

  难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”

  数学《一元二次方程》教案设计 篇10

  教学目标

  掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

  重点、难点:

  二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

  教学过程:  一、情境创设

  一次函数y=x+2的图象与x轴的交点坐标

  问题1.任意一次函数的图象与x轴有几个交点?

  问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?

  二、探索活动

  活动一观察

  在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

  活动二观察与探索

  如图1,观察二次函数y=x2-x-6的图象,回答问题:

  (1)图象与x轴的交点的坐标为A(,),B(,)

  (2)当x=时,函数值y=0。

  (3)求方程x2-x-6=0的解。

  (4)方程x2-x-6=0的解和交点坐标有何关系?

  活动三猜想和归纳

  (1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

  (2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

  这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

  三、例题分析

  例1.不画图象,判断下列函数与x轴交点情况。

  (1)y=x2-10x+25

  (2)y=3x2-4x+2

  (3)y=-2x2+3x-1

  例2.已知二次函数y=mx2+x-1

  (1)当m为何值时,图象与x轴有两个交点

  (2)当m为何值时,图象与x轴有一个交点?

  (3)当m为何值时,图象与x轴无交点?

  四、拓展练习

  1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

  (1)请写出方程ax2+bx+c=0的根

  (2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

  2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)

  五、小结

  这节课我们有哪些收获?

  六、作业

  求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。

  数学《一元二次方程》教案设计 篇11

  一、教材分析:

  1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

  2、教学目标要求:

  (1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

  (2)能根据具体问题的实际意义,检验结果是否合理;

  (3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

  (4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

  3、教学重点和难点:

  重点:列一元二次方程解与面积有关问题的应用题。

  难点:发现问题中的等量关系。

  二.教法、学法分析:

  1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

  2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  三.教学流程分析:

  本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

  活动1复习回顾解决课前参与

  活动2封面设计问题的探究

  活动3草坪规划问题的延伸

  活动4课堂回眸

  这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

  活动1复习回顾解决课前参与

  由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

  活动2封面设计问题的探究

  通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

  活动3草坪规划问题的延伸

  放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

  活动4课堂回眸

  本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

  数学《一元二次方程》教案设计 篇12

  知识目标

  了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

  能力目标

  通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

  情感目标

  通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

  教学重点

  二元一次方程组的含义

  教学难点

  判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

  教学过程

  一、引入、实物投影

  1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

  2、请每个学习小组讨论(讨论2分钟,然后发言)

  这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

  师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

  师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

  注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次

  练习

  下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

  xy=12x(y+1)=c2x-y=1x+y=0

  二、议一议、

  师:上面的方程中x-y=2的.x含义相同吗?

  数学《一元二次方程》教案设计 篇13

  教学目标

  知识与技能目标

  1、构建本章的部分知识框图。

  2、复习一元二次方程的概念、解法。

  过程与方法

  1、通过对本章方程解法的复习,进一步提高学生的运算能力。

  2、在解一元二次方程的过程中体会转化等数学思想。

  情感、态度与价值观

  通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

  教学重点

  1、一元二次方程的概念

  2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

  教学难点

  解法的灵活选择;例4和例5的解法。

  教学过程  一、创设情境

  导入新课

  问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

  二、师生互动

  共同探究

  1、复习概念

  例1

  例2

  2、四种解法

  (1)

  解法及其关系

  (2)

  根的形式

  x1=3

  x2=4

  (3)熟悉解法

  例3用四种解法分别解此方程

  (4)方法优选

  3、方法补充

  例4

  4、解法纠错

  例5

  解关于x的方程

  错误解法

  正确解法

  三、小结反思

  提炼思想

  我们有哪些收获?解方程的思想方法是什么?

  四、布置作业

  巩固提高

  数学《一元二次方程》教案设计 篇14

  

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  

  1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

  2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

  

  理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

  

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  

  一、复习旧知,类比新知

  1、一元一次方程的概念

  像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

  2、一般形式:

  是常数且

  设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

  二、生活情境,自主学习

  (1)正方形桌面的面积是2m

  ,设正方形桌面的边长是x m,可得方程

  (2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,

  设花圃的宽是x m则花圃的长是m,

  可得方程

  (3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

  (4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程

  设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  三、探究学习:

  1、概念得出

  讨论交流:以上所列方程有哪些共同特征?

  设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.

  2、巩固概念

  下列方程中那些是一元二次方程。

  设计意图:

  这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.

  3、一元二次方程的一般形式:

  设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.

  4.典型例题

  例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解。

  5.巩固练习

  把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解

  6、拓展应用

  (1)、若是关于x的一元二次方程,则()

  A、p为任意实数B、p=0 C、p≠0 D、p=0或1

  (2)、若关于x的方程mx

  -2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

  (3)、若方程是关于x的一元二次方程,则m的值为

  设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

  7.课堂小结

  设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

  

  1、下列方程中哪些是一元二次方程?试说明理由。

  2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

  数学《一元二次方程》教案设计 篇15

  一、教学目标

  

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  二、教学重难点

  

  运用因式分解法求解一元二次方程。

  

  发现与理解分解因式的方法。

  三、教学过程

  (一)导入新课

  复习回顾:和学生一起回忆平方差、完全平方公式,以及因式分解的常用方法。

  (二)探究新知

  问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

  学生小组讨论,探究后,展示三种做法。

  问题:小颖用的什么法?——公式法

  小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

  小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

  问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

  师引导学生得出结论:

  如果a·b=0,那么a=0或b=0

  (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

  “或”有下列三层含义

  ①a=0且b≠0②a≠0且b=0③a=0且b=0

  问题3:

  (1)什么样的一元二次方程可以用因式分解法来解?

  (2)用因式分解法解一元二次方程,其关键是什么?

  (3)用因式分解法解一元二次方程的理论依据是什么?

  (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

  因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

  老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

  (三)巩固提高

  1.用分解因式法解下列方程吗?

  总结:右化零,左分解,两因式,各求解。

  (四)小结作业

  用因式分解法求解一元二次方程的步骤:

  1.方程化为一般形式;

  2.方程左边因式分解;

  3.至少一个一次因式等于零得到两个一元一次方程;

  4.两个一元一次方程的解就是原方程的解。

  数学《一元二次方程》教案设计 篇16

  教学内容:

  本节内容是:

  人教版义务教育课程标准实验教科书数学九年级上册

  第22章第2节第1课时。

  一、教学目标

  (一)知识目标

  1、理解求解一元二次方程的实质。

  2、掌握解一元二次方程的配方法。

  (二)能力目标

  1、体会数学的转化思想。

  2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

  (三)情感态度及价值观

  通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

  二、教学重点

  配方法解一元二次方程的一般步骤

  三、教学难点

  具体用配方法的一般步骤解一元二次方程。

  四、知识考点

  运用配方法解一元二次方程。

  五、教学过程

  (一)复习引入

  1、复习:

  解一元一次方程的一般步骤:

  (1)去分母;

  (2)去括号;

  (3)移项;

  (4)合并同类项;

  (5)系数化为1。

  2、引入:

  二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

  (二)新课探究

  通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。

  问题1:

  一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?

  问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,

  具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2

  列出方程:60x2=1500

  x2=25

  x=±5

  因为x为棱长不能为负值,所以x=5

  即:正方体的棱长为5dm。

  1、用直接开平方法解一元二次方程

  (1)定义:运用平方根的定义直接开方求出一元二次方程解。

  (2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

  问题2:

  要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?

  问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。

  具体解题步骤:

  解:设场地宽x m,长(x +6)m。

  列方程: x(x +6)=16

  即: x2+6x-16=0

  x2+6x=16

  x2+6x+9=16+9

  (1)有实根(2)有两正根(3)一正一负

  变式题:m为何实数值时,关于x的方程x2?mx?(3?m)?0有两个大于1的根.

  例2. 若8x4+8(a-2)x2-a+5>0对于任意实数x均成立,求实数a的取值范围.

  例3.关于x的方程ax?2x?1?0至少有一个负根,求实数m的取值范围。

  课堂小练习:

  

  省略

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除