分数的基本性质教案(精选5篇)
分数的基本性质教案(精选5篇)
作为一位优秀的人民教师,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的分数的基本性质教案(精选5篇),仅供参考,大家一起来看看吧。
分数的基本性质教案1
设计说明
1、注重情境创设,激发学生的学习兴趣。
伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的。接着教师提问设疑,导入新课。
2、突出学生的主体地位,在实践操作中掌握新知。
学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。
课前准备
教师准备PPT课件
学生准备若干张同样大小的圆形纸片、彩笔
教学过程 一、故事引入
1、教师讲故事。
师:老师给大家讲一个分饼的故事,你们想听吗?三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。
大毛、二毛、三毛都满意地笑了,妈妈也笑了。
设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。
2、探究验证。
(1)提出猜想。
师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?
生:同样多。
师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!
(2)验证猜想。
请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。
①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。
②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。
③剪一剪:把圆形纸片中的涂色部分剪下来。
④比一比:把剪下的涂色部分重叠,比一比。
师:通过比较,结果是怎样的?
生:同样大。
设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的.实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。
3、揭示课题。
师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)
二、探究新知
1、观察比较,探究规律。
(1)请同学们观察,比较三个分数的大小。
师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)
师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。
(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)
师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?
(课件出示:比较它们的分子和分母)
①从左往右看,是按照什么规律变化的?
②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。
师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)
师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]
师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]
师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)
(3)教师总结分数的基本性质。(板书)
分数的基本性质教案2
教学目标:
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的'方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、自主练习、巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。
课堂小结:
一生小结,他生补充,教师评判。
分数的基本性质教案3
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
请同学观察,思考和讨论。投影出思考题:
如何?
结果如何?
变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?
学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)
的变化规律是什么?(学生小组讨论后汇报)教师板书:
教师:试说一说这时分子、分母的变化规律?
学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。
教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:这就是分数的.基本性质,是这节课研究的问题。板书出课题:分数基本性质。
请学生打开书读两遍。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)
用学生自己的例题说明后,用投影片再说明:
口答填空:(投影片)
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在()里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
板书设计
分数的基本性质教案4
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:
多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分数的分子和分母都乘或除以相同的数,分数的'大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10()/24()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教案5
教学目标:
1、理解分数的基本性质。
2、初步掌握分数的基本性质。
3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。
教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。
设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。
在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。
通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。
第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。
教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =
从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的`数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。
请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习
(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)
3、请找我的好朋友练习。(以游戏的形式来进行)
要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。
( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)
4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )
(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)
5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。
分数的基本性质教案6
一、 教材
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
《义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的认识。
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的.发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,
我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
二、教法
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
三、说学法
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
四、说教学过程
本着让学生
“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。
分数的基本性质教案7
教学内容:教科书第60~61页,例1、例2、
练一练,练习十一第1~3题。
教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
教学重点:让学生在探索中理解分数的基本性质。
教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的`?说出自己的想法。
二、教学新课
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
三、巩固练习
1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?
2、完成第2题。独立完成,交流想法。
四、课题总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
分数的基本性质教案8
教学目标
1、进一步理解分数基本性质的意义,掌握约分的方法。
2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。
教学重难点约成最简分数 教学准备:分数卡片口算卡片 教学过程
一、自主回顾
回顾一下对约分的理解情况
突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。
师:什么是最简分数?
说一说。
二、巩固练习
师分数卡片判断
1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)
你是怎样寻到的?说说自己的理由好么?
2、能用不同的分数表示下面各题的商吗?
练习十一第8题
师:我们在刚刚学习分数和除法的'关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。
师:你能写出不同的除法算式吗?
=()÷()=()÷()
你能说出几个除法的算式?
这些算式之间有什么联系?
3、快乐学习超市
超市画面快乐套餐1快乐套餐2
快乐套餐1:比一比○○0.4
计算并化简+=-=
在()填上最简分数20分=()时
快乐套餐2、3同上。
(分组练习小组代表汇报整合了练习十一10至14题)
4、集中练习
把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?
分母是10的最简分数有几个?
请你提出一个类似的问题。
课堂作业
练习十一第9题,12、13、14题各自选2个
课后练习:完成练习册上的相应练习。
分数的基本性质教案9
教学目标
1、进一步理解通分的意义,
2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。
3、能灵活的运用通分的方法进行分数的'大小比较。
教学重难点:运用通分的方法进行分数大小比较
教学准备:分数卡片
一、回顾
1、什么是通分?怎样通分?
2、我们可以在什么时候应用通分?
3、互动:相互出题练习相互交流(3分钟)
二、教学例5
出示例题:小芳和小明看一本同样的故事书。
学生提出问题。
分析解答。
师:谁看的页数多?
这个问题实质是什么?
生:比较两个分数的大小。
师:小组研究,比较两个分数的大小。
方法一:画图比较
方法二:通分比较
转化成同分母的分数
方法三:化成小数再比较
学生汇报,分类领悟比较的方法。
注意方法的规范。
你还有什么别的比较方法吗?
:通分的方法在比较分数大小中的运用
三、巩固练习
1.先通分,再比较下面各组分数的大小66页练一练
2、练习十二第五题
先明确题目的要求有两个。
4、自由练习
分小组编拟交换练习
四、全课
五、课堂作业:第7题,第8题
分数的基本性质教案10
教学内容:
人教版数学五年级下册第57页例1、例2。
教学目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
(3)培养学生的观察、比较、归纳、总结概括能力
(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:自主探究、归纳概括分数的基本性质。
教学过程: 一、情境设置,引入新课:
唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”
问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?
问2:猪八戒有没有多吃到饼了?
二、探究新知,解决问题
1、师:到底谁的猜想是正确的呢?
(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?
(2)学生汇报
(3)得出结论:1/4=2/8
2、初步概括分数基本性质
(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?
提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?
师板书:分数的分子分母同时乘相同的数,
分数的大小不变。
(2)师:谁来举一个例子。师板书,并问:同时乘以了几?
(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。
师板书:或者除以
3、理解运用分数基本性质
(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)
学生回答,并说明理由。
(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。
(课件出示式子:)这个式子成立吗?
生:因为在分数当中分母乘就等于0,分母不能为0。
师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?
生:不成立,因为除数不能为0
(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的.分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数。
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)
师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.
三、知识运用
1、例2:把2/3和10/24化成分母是12而大小不变的分数。
(1)问:分子分母应怎样变化?变化的依据是什么?
(2)让生独立完成,完成后汇报你是怎样想的?
2.完成课件练习
3、拓展延伸:
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.
四、课堂小结
1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
五、板书设计
分数的基本性质
1/4 =2/8
分数的分子分母同时乘相同的数(0除外),
除以
分数的大小不变。
分数的基本性质教案11
教学内容:人教版五年级数学下册57页内容。
教学目标:
知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。
过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。
情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。
教学重点:使学生理解和掌握分数的基本性质。
教学难点:运用分数的基本性质解决相关的问题。
教学准备:多媒体课件、正方形纸、直尺、彩笔
教学过程:
一、铺垫孕伏,温故迁移
1.比一比:看谁算得又对又快。
2.说一说:商不变的`性质是什么?
3.想一想:分数与除法有怎样的关系?
4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?
二、设疑激趣,探究新知 (一)故事激趣,引出分数。
说出自己从故事中听到的分数。
(二)小组合作,直观感知。
1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。
2.画一画:画出折痕所在的直线。
3.涂一涂:
(1)给平均分成2份的正方形纸的其中的1份涂上颜色。
(2)给平均分成4份的正方形纸的其中的2份涂上颜色。
(3)给平均分成8份的正方形纸的其中的4份涂上颜色。
4.比一比:比较3张正方形纸涂色部分的大小。
5.议一议:和同伴说说自己的想法。
(二)观察比较,探究规律。
1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。
2.汇报交流。
3.启发点拨。
通过从左往右观察、比较、分析,你发现了什么?
引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。
那么,从右往左看呢?
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
4.归纳小结:引导学生概括出分数的基本性质。
5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?
(三)独立尝试,运用规律。
1.学生独立思考,完成例2。
2.反馈交流,订正点拨。
3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。
三、达标检测,内化提升(见《达标测试题》) 四、总结收获,评价激励
这节课你有什么收获?你对自己的哪些表现比较满意?
板书设计:
分数的基本性质
例1:
分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
例2:
分数的基本性质教案12
分数基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
根据分数的基本性质,我们能够把任何一个分数变换成另一个分数单位的等值分数。也就是说,分数基本性质解决了分数单位的换算问题。统一了分数单位,异分母的分数才能进行加减运算。
例如,+=+
=×2+
=×(2+1)
=。
在分数的运算中,把异分母分数变成同分母的分数的过程,叫通分;通分是把较小的分数单位变换为较大的分数单位。在分数的运算中,有时也需要把较大的分数单位变换成较小的分数单位,这个过程叫约分。
例如,×=
=
=。
通分和约分的理论根据都是分数的基本性质。
分数基本性质还是分数集合分类的一个标准。根据分数基本性质,可以把分数集合中所有等值分数都归为一类,于是分数集合就被分成无数个这样的等值分数的类别。如,上述和属于同一类,和属于同一类。
在分数集合的每一个等值分数的类别中,都有且只有一个最简分数。所谓最简分数,就是它的分子和分母除1以外再也没有其他的公因数了。如,上述、都分别是它们所在的等值分数类别中的最简分数。
在分数集合中,最简分数就是每一个等值分数类别的代表。确定这一个代表的重要意义是,确保分数运算与自然数运算一样,运算结果具有单值性(唯一性)。这就是为什么要对运算结果进行约分,直到最简分数为止。
小数单位0.1、0.01、......分别与分数单位、、......是等价的,小数是特殊的分数。小数与分数可以互相转化。
例如,把0.25化为分数。
方法1:(根据小数的意义)
0.25=0.01×25
=×25
=
=。
方法2:(把小数视为分母是1的分数)
0.25=
=
=
=。
方法1和方法2中,每一步都是可逆的,所以如果把化为小数,也有与上述对应的两种方法。此外,把分数化为小数还可以直接利用除法,即=1÷4=0.25。
在上述两种方法中,分数的基本性质都发挥了作用。
分数基本性质与商不变规律,事实上是从不同的形式表示相同的规律。本质相同而形式不同,主要是适应不同的情境。所以,从商不变规律的重要性亦可反观分数基本性质的重要性。
遇到小数除法,根据商不变规律可以转化为整数除法,从而以整数除法为基础把把小数除法与整数除法统一起来。
例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;
或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.
如果把2.4÷0.4写成分数形式,也未尝不可,不过将出现被称为“繁分数”的分数形式。把繁分数化为简单分数,也必须根据分数的基本性质。
例如,=
=
=6.
有了“商不变规律”,在算式的等值变形中可以避免出现繁分数的形式,所以繁分数的概念很早以前就已经不出现在小数数学的教科书中了;即使出现了“繁分数”,我们就把它当作一般分数来对待,也不必专门为之增加一个新名称。
当沟通了分数、除法与比的本质的联系后,我们可以想到,其实比也有一个与分数基本性质等价的基本性质。即比的前项与后项都乘或除以相同的数(0除外),比值不变。
根据比的这一基本性质,比可以进行等值变形。在比的实际应用中,如果不掌握比的等值变形,就会寸步难行。不过,比的等值变形不能局限于比的化简。在笔者《分数认识的三次深化与发展》中,已经说明把按比分配转化为分数问题来解决的时候,事实上要把整数比转化为分数比的形式,而且这些表示部分与整体关系的分数的总和还必须等于1(即部分之和等于整体)。
下面再看两个实例,进一步体会比的必要性。
例1一种混凝土是由水泥、沙子和石子混合成的,其中水泥与沙子的比是1︰1.5,沙子与石子的'比是1︰。这种混凝土中水泥、沙子和石子的比是多少?
问题中两个已知的比,分别表示混凝土中两个成分的比,而且这两个比的基准不一致。解决这个问题的关键是统一比的基准。因为这两个比中都含有沙子的成分,所以选择沙子为统一的基准,就能把两个比统一起来。
解:水泥︰沙子=1︰1.5=10︰15=︰1;
沙子︰石子=1︰。
所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。
当某种混合物的成分多于两种,并要表示它各种成分之间的倍比关系时,比的表示形式就得天独厚志显示出它的优越性。
例2(阿拉伯民间流传的数学故事)有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的、、。儿子们想来想去没法分:他们所得的都不是整数,即分别为、和,总不能把一匹马割成几块来分吧?聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,还剩一匹我照旧牵回家去。”这样把分的问题解决了。
学习比的知识,我们都会变得和阿拉伯兄弟的那个邻居一样聪明。这个知识就是比的等值变形。
解:︰︰=(×12)︰(×12)︰(×12)
=6︰3︰2,
而且6+3+2=11。
所以,老大、老二、老三分别分得的马分别是6匹、3匹和2匹。
这位阿拉伯邻居一定是一名优秀教师,他善于把上述抽象的演算过程直观地表现出来。他牵来自己的一匹马,凑成12匹马,这个12恰是这三个分数分母的最小公倍数,这个数也是把这三个分数的比化为整数比的关键所在。
综上,可以看到分数基本性质的重要地位和作用:
⒈是把分数从一个分数单位换算为另一个分数单位的基础;
⒉是分数的通分与约分的根据,也是一些算式等值变形的重要途径之一;
⒊是分数集合被分成等值分数类别的分类标准,在每一个类别中都有且只有一个最简分数,使得分数运算的结果具有唯一性。
分数的基本性质教案13
教学目标:使同学进一步熟悉分数的基本性质,能正确地应用分数的基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。
教学重点:应用分数基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数
教学难点:能正确应用分数基本性质解决有关的问题。
教学课型:新授课
教具准备:课件
教学过程:
一,迁移类推,导入新课
1,口答:什么是分数的基本性质
2,在下面的括号内填上适当的`数。 [课件1]
3/4=( )/8 1/2=( )/10 6/( )=2/7
2/3=( )/18=16/24 12/24=( )/( )
二,探求新知,提高能力
教学P108 。例 2: 把2/3和10/24化成分母是12而大小不变的分数。
提问:A,怎样使2/3的分母变成12
B,根据分数的基本性质,要使分数2/3的大小不变,分子应怎样变化
板书: 2/3=2×4/3×4=8/12
C,怎样使10/24的分母变成12
D,根据分数的基本性质,要使分数10/24的大小不变,分子应怎样变化
板书: 10/24=10÷2/24÷2=5/12
补充例题: 把2和3/7,5/8化成分母是它们的最小公倍数而大小不变的分数。
分析: A,想想,它们的最小公倍数是几
B,2是个整数,怎样化成分数呢 以多少做分母,分子又是多少呢
※ P108 。做一做1,2
三,巩固练习,强化提高
1,P109 。2
2,P109 。4
3,P110 。10
提问:这道题是在什么情况下份数的大小发生变化这个变化有没有规律呢
述:一个分数的分母不变,分子扩大(或缩小)若干倍,分数大小也扩大(或缩小)相同的倍数;假如分子不变,分母扩大(或缩小)若干倍,分数大小反而缩小(或反而扩大)相同的倍数。即:一个分数的分母不变,分子乘以3,这个分数就扩大3倍;假如分子不变,分母除以5,这个分数就扩大5倍。
2,P110 。11
§ 要根据分数和除法关系,把分数的基本性质和除法中商不变的性质联系起来考虑,进行填空。
3,P110 。考虑题
§ 先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒满已装入5升的7升水桶,这时5升水桶里剩下3升水;将7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒满已装3升的7升水桶,剩下的就是1升水。
四,家作
P110 。7,8,9
分数的基本性质教案14
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的'概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在123=4 48=0.5 20.l=20 3.20.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为155=3,所以15是倍数,5是约数. ( )
因为4.62=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
分数的基本性质教案15
内容:P15、16例1、2 ,练习四第1-3题。
目标:
1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。
2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
重点:正确理解与分析运用分数的基本性质。
过程:
一、创设情境,导入新课。
“大圣”分桃:
话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?
二、师生共研、发现规律。
师生共同揭秘“分桃”内幕。
人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:
1÷2=1/2=2/4=4/8
从上面这三个分数的相等关系,你发现了什么?
从左往右看:
1/2 = 1×2 / 2×2 = 2/4
从右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。
观察分子、分母的变化,同时归纳小结。
学生试,验证自己提出的观点是否正确。
小结:
分数的分子和分母同时乘上或者除以相同的数(零除外)分数的.大小不变。
三、数学小报,再次验证。
1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。
2.将折得的小报中数学趣题版用阴影显示出来。
3.将四张的折叠结果重叠,得出数学趣题版面大小。
4.针对式子进行口头表述。
四、理解性质、简单运用。
例2的教学
(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。
请同学们理清题意,然后进行转化。
(2)反馈。
(3)质疑
让学生通过讨论,深化对分数大小不变的要求的理解。
(4)议一议
由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。
五、练习巩固、拓展提高。
1.课堂活动
2.提取第一题的结果,进行深入思考:
当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?
结论:大小不变,分数单位要变。
六、全课总结:
这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?
七、作业:
练习四第1-3题。
分数的基本性质教案16
教学内容:
苏教版小学数学教材第十册,第95~96页,例1、例2,分数的基本性质。
教学目标:
1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。
2、能正确理解分数的基本性质,能应用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。
教具、学具:4张同样大小的纸条/每人
教学过程:
教学环节与教学内容
学生学习活动
教师教学活动
一、
复习准备:
1、出示:
除法
分数表示
小数表示
1÷2
2÷4
3÷6
2、启思引入。
口算。
回忆、口答分数与除法的关系。
回忆并口述商不变的规律。
提出问题。
板书。谈话引导。
“用分数表示时,你是根据什么来做的?”
“观察用小数表示的结果,体现了什么规律?”
“完成上题后,你产生了哪些疑问?”
二、
进行新课:
1、直观验证
2、发现规律
(1)探索
(2)应用
==
==
==
(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。
(4)概括规律。
3、组织练习。
(1)判断:
=()
=()
=()
=()
(2)说一说,和有什么关系?
(3)说一说,商不变的性质和分数的基本性质有什么关系?
4、教学例2。
用纸条操作、验证,并展示。
思考、口答。
讨论、交流。
填空、交流。
交流,发现“(零除外)”。
讨论、交流。
口述。
理解、记忆。
判断、口答。
交流,
交流。
尝试解答。
集体交流。
“你能直观验证一下==吗?”
“你能从操作过程中体会到这三个分数为什么会相等吗?”
“你能再写一个统它们相等的分数吗?”“写的.时候你是怎样想的?”
“你发现了什么规律?”
“怎样填才能又对又快?
总结规律。
“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”
“你是怎样发现的?”
“能把它们合成一句话吗?”
揭示、板书课题。
指导。
巡视、个别辅导。
评讲。
三、
课堂小结:
反思、回顾、整理、交流。
“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”
四、
巩固练习:
练习十八1
练习十八2
练习十八3
先操作,再比较。
先判断,再说理。
指名口答。
“这题验证了什么性质?”
教后反思
分数的基本性质教案17
教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的.基础上,建立了猜想试验分析合情推理探究创造的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.
2、培养学生观察、分析、思考和抽象、概括的能力.
3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
演示法、观察法、讨论法、交流法。
分数的基本性质教案18
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的大小比较。
教学准备 分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报 纠错
二、集中练习
教师出示:比较下面各组分数的大小
1、 和 和
2、 和 和
请同学评讲
课本练习68页第九题 把下面分数填入合适的圈内。
比 大的分数有:
比 小的分数有:
师生讨论:怎样快速的分类?
自由说一个比 的分数。并说出理由。
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10= =
小红:4÷7=
因为 = = >
所以 >
答:小明的平均步长长一些。
四、拓展练习:
下面3名小棋手某一天训练的成绩统计
总盘数赢的`盘数赢的盘数占总数的几分之几
张129
李107
赵138
谁的成绩最好?
小组合作集体解决题型。
三个分数的大小比较,怎样比较较好?
五、课堂作业
68页第11题
分数的基本性质教案19
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。
设计思路:
《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
教学目标:
1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。
教学重点:
理解和掌握分数的基本性质。
教学难点:
应用分数的基本性质解决实际问题。
教学方法:
直观演示法、讨论法等。
学法:
合作交流、自主探究。
教学准备:
每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。
教学过程:
一.创设情景,激发兴趣
(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大胆猜想,揭示课题
学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三 .探索研究,验证猜想
1. 动手操作,验证性质。
(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12
份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?
(2)小组合作:①观察、分析、比较在组内交流你的发现。
②合作交流,各抒己见。
123③选代表全班汇报、交流,师相机板书:4812
123(3)合作讨论: 为什么相等? 4812
①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。
2.分组汇报,归纳性质。
a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答
b.从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答)
c.有与这一组探究的分数不一样的'吗?你们得出的规律是什么?
d.综合刚才的探究,你发现什么规律?
(4)引导学生概括出分数的基本性质,回应猜想。
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)
33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212
的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)
分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x
四.回归书本,探源获知
1.浏览课本第75—78页的内容。
2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)
3.分数的基本性质与商不变性质的比较。
(1)小组合作:讨论分数的基本性质与商不变性质的异同。
(2)小组内交流。
(3)选代表全班交流、汇报。
(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!
4.自主学习并完成例2,请二名学生说出思路。
五.巩固深化,拓展思维(PPT演示文稿出示下列题目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
学生口答后,要求说出是怎样想的?
2.在下面( )内填上合适的数。
要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
3.思维训练(选择你喜爱的一道题完成)
3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5
(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。
思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
六.全课小结
本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)
七.布置作业
P77—78练习十四第1、5、8题。
教学反思
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:
1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!
2.学生在操作中大胆猜想。
新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。
3.学生在自主探索中科学验证。
分数的基本性质教案20
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的'问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除