《正比例》教案5篇
《正比例》教案1
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点:根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
《正比例》教案2
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
教学重难点:正比例的意义以及判断两种相关联的量是不是成正比例。
教学准备:教学光盘
教学预设:
一、导入新课
1、谈话:老师准备去水果超市买一些苹果,已知苹果每千克的单价是6元,如果我准备买1千克,你能求出什么?(总价)
2、出示表格
已知苹果每千克的单价是6元
根据学生的回答将表格填写完整。
**:如果买( )千克,总价( )元 ……;
观察表格,你们发现了什么?(当学生回答:买的千克数越多,总价就越高)
师小结:像这样一种量变化,另一种量也随着变化,我们就把这两种量叫做相关联的量[板书:两种相关联的量]
在这里——“买的千克数”和“总价”就是两种相关联的量。
二、探索新知
(一)体会两种相关联的量
1、出示例1表格
2、**:这张表格中的两个量是否相关联?
学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)
(二)探索两个变量之间的关系
1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?
启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
3、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?
路程
根据学生的回答,教师板书关系式:时间 = 速度(一定)
4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)
反问:在什么条件下行驶的路程和时间呈正比例?
三、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、抽象表达正比例的意义
1、引导学生观察上面的两个例子,说说它们有什么共同点。
2、启发学生思考:如果用字母x和分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式/x=(一定)
五、巩固练习
1、完成第63页的“练一练”。
先让学生**思考并作出判断,再要求说明判断理由。你是怎样判断的?
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再**讨论和交流。
第2题先让学生**进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,**学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
六、全课小结
通过这节课的学习,你有哪些收获?
七、课堂作业:
完成补充习题的相关练习
补充练习:
1、判断下面每题中的两种量是不是成正比例,并说明理由。
①每小时织布米数一定,织布总米数和时间。
②每人树植棵数一定,参加植树人数和植树总棵数。
③订阅《*少年报》的份数和钱数。
④小新跳高的高度和他的身高。
⑤长方形的宽一定,它的面积和长。
2、选择。
a和b相关联的两种量,下面哪个式子表示a和b成正比例?
①a+b=12 ② =5 ③ab= ④a-b=3.8 ⑤b=7a
3、x、、z是三种相关联的量,已知x×=z。
当( )一定时,( )和( )成正比例。
《正比例》教案3
1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。
2.学会判断成正比例关系的量。
3.进一步培养学生观察、分析、概括的能力。
教学重点和难点
理解正比例的意义,掌握正比例变化的规律。
教学过程设计
(一)复习准备
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
(二)学习新课
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1 一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到***。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2 某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
(三)巩固反馈
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
(四)课堂总结
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(五)布置作业
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水*不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
板书设计
《正比例》教案4
设计说明
本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:
1.有效利用教材图表,增强对相关联的量的形象感受。
教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。
2.科学调动多种感官,增强对知识形成过程的体验。
在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。
3.体会数学与生活的密切联系,关注对正比例意义的理解。
因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。
课前准备
教师准备 多**课件
教学过程
第1课时 正比例的认识
⊙复习导入
1.引导回顾。
师:什么是相关联的量?请举例说明。
(学生汇报)
2.导入新课。
师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。
设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。
⊙探究新知
1.借助图表,进一步感知相关联的量。
面积/cm2
小组合作探究,交流下面的问题:
(1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。
(2)同桌合作填表。
(3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?
预设
生1:我从表中发现正方形的边长增加,周长也增加。
生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。
生3:我从表中发现正方形的周长总是边长的4倍。
生4:我从表中发现正方形的边长增加,面积也增加。
……
(4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?
预设
生1:相同点是都随着边长的增加而增加。
生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。
生3:在变化过程中,正方形的周长与边长的比值一定,都是4。
生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。
《正比例》教案5
正比例
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:小黑板小黑板。
学具:作业本,数学书。
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
住户张家赵家
水费(元)1520
用水量(吨)68
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们*时的生活中,除了这两种量,我们还要遇到哪些数量呢?
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
二、自主探索,学习新知
1.教学例1
用小黑板在刚才准备题的表格中增加几列数据,变成下表。
住户张家赵家**周家刘家吴家
水费(元)1520352517.5
用水量(吨)6814109
教师:请同学们观察这张表,先**思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
水费用水量=156=208=3514=……=2.5
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:水费用水量=每吨水单价(一定)
2.教学“试一试”
教师:我们再来研究一个问题。
小黑板出示第52页下面的“试一试”。
学生先**完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80M,它们之间的关系可以写成路程时间=速度(一定)
3.教学“议一议”
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动
教师:请大家说一说生活中还有哪些是成正比例的量。(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生**思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
《正比例》教案5篇扩展阅读
《正比例》教案5篇(扩展1)
——《正比例》优秀教案5篇
《正比例》优秀教案1
教学目标:
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学准备 :实物投影
教学预设:
一、概念复习:
1、**:怎样的两个量成正、反比例?
根据学生回答板书字母关系式。
二、书本练习:
1、第9题。
(1)观察每个表中的数据,讨论前三个问题。
要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
(2)**学生讨论第四个问题。
启发学生根据条件直接写出关系式,再根据关系式直接作出判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。
要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,**学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习
1、对比练习:判断下列说法是否正确。
(1)圆的周长和圆的半径成正比例。( )
(2)圆的面积和圆的半径成正比例。( )
(3)圆的面积和圆的半径的*方成正比例。( )
(4)圆的面积和圆的周长的*方成正比例。( )
(5)正方形的面积和边长成正比例。( )
(6)正方形的周长和边长成正比例。( )
(7)长方形的面积一定时,长和宽成反比例。( )
(8)长方形的周长一定时,长和宽成反比例。( )
(9)三角形的面积一定时,底和高成反比例。( )
(10)梯形的面积一定时,上底和下底的和与高成反比例。( )
《正比例》优秀教案2
教学目标
1、使学生理解正比例的意义.
2、能根据正比例的意义判断两种量是不是成正比例.
3、培养学生的抽象概括能力和分析判断能力.
4、使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习
出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度
2.已知总价和数量,怎样求单价?板书:=单价
3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率
4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量
二、导入新课
教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)
三、新课
1、教学例1.
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
**:
表中有哪几种量?
当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?
这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).
时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,
让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.
比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)
教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕
2、教学例2.
出示例2:在布店的柜台上,有像下面一张写着某种花布的米数和总价的表.
数量(米) 1 2 3 4 5 6 7
总价(元) 8。2 1* 24。6 32。8 41。0 49。2 57。4
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
然后进一步问:
这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.
3、抽象概括正比例的意义.
教师:请同学们比较一下刚才这两个例题,回答下面的问题:
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的.?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系.
最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书
4、教学例3.
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
面粉的总重量和袋数是不是相关联的量?
面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)
已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.
5、巩固练习.
让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以
四、课堂练习
《正比例》优秀教案3
教学目标:
1、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
3、结合丰富的事例,认识正比例。
教学重点:
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:课件
教学过程:
一、课前预习
预习书19———21页内容
1、填好书中所有的表格
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答
二、展示与交流
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征
《正比例》优秀教案4
教学目标:
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学准备 :实物投影
教学预设:
一、概念复习:
1、**:怎样的两个量成正、反比例?
根据学生回答板书字母关系式。
二、书本练习:
1、第9题。
(1)观察每个表中的数据,讨论前三个问题。
要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
(2)**学生讨论第四个问题。
启发学生根据条件直接写出关系式,再根据关系式直接作出判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。
要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,**学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习
1、对比练习:判断下列说法是否正确。
(1)圆的周长和圆的半径成正比例。( )
(2)圆的面积和圆的半径成正比例。( )
(3)圆的面积和圆的半径的*方成正比例。( )
(4)圆的面积和圆的周长的*方成正比例。( )
(5)正方形的面积和边长成正比例。( )
(6)正方形的周长和边长成正比例。( )
(7)长方形的面积一定时,长和宽成反比例。( )
(8)长方形的周长一定时,长和宽成反比例。( )
(9)三角形的面积一定时,底和高成反比例。( )
(10)梯形的面积一定时,上底和下底的和与高成反比例。( )
《正比例》优秀教案5
1、成正比例的量
教学内容:成正比例的量
教学目标:
1.使学生理解正比例的意义,会正确判断成正比例的量。
2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二探索新知
1.教学例1
(1)出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝24681012
体积/㎝350100150200250300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
①在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
②学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一,两种相关联的量;
第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三,两个量的比值一定。
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(4)想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2.教学例2。
(1)出示表格(见书)
(2)依据下表中的数据描点。(见书)
(3)从图中你发现了什么?
这些点都在同一条直线上。
(4)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
②体积是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350㎝3,相对应的点一定在这条直线上。
(5)你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特往。
3.做一做。
过程要求:
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。
(2)表中的路程和时间成正比例吗?为什么?
成正比例。理由:
①路程随着时间的变化而变化;
②时间增加,路程也增加,时间减少,路程也随着减少;
③种程和时间的比值(速度)一定。
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?
(5)你还能提出什么问题?
4.课堂小结
说一说成正比例关系的量的变化特征。
三巩固练习
完成课文练习七第1~5题。
2、成反比例的量
教学内容:成反比例的量
教学目标:
1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。
2.根据反比例的意义,正确判断两种量是否成反比例。
教学重点:反比例的意义。
教学难点:正确判断两种量是否成反比例。
教学过程:
一导入新课
1.让学生说一说成正比例的两种量的变化规律。
回答要点:
(1)两种相关联的量;
(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;
(3)两个量的比值一定。
2.举例说明。
如:每袋大米质量相同,大米的.袋数与总质量成正比例。
理由:
(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;
(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数
减少,大米的总质量也相应减少;
(3)总质量与袋数的比值一定。
所以,大米的袋数与总质量成正比例。
板书:
3.揭示课题。
今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?
板书课题:成反比例的量[ 内 容 结 束 ]
《正比例》教案5篇(扩展2)
——正比例的意义教学教案
正比例的意义教学教案1
教学内容:
教材第39—41页例1一例3、“练一练”,练习八第1—3题。
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:
认识正比例关系的意义。
教学难点:
掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当***一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、教学新课
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论,得出:
(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。
(2)时间扩大,路程也扩大;时间缩小,路程也缩小。
(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。**:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)
2.教学例2。
出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再**:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)
3.概括正比例的意义。
(1)综合例1、例2的共同点。
**:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)**:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。
4.具体认识。
(1)**:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?**:看两种相关联的量是不是成正比例,关键要看什么?
(2)做练习八第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
5.教学例3。
出示例3,让学生思考。**:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
现在,我们根据上面的判断方法来做一些题。
1.做“练一练”第l题。
指名学生口答,说明理由。可以结合写出数量关系式。
2.做“练一练”第2题。
指名口答,并要求说明理由。
3.做练习八第2题。
小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)
4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业
练习八第3题。
《正比例》教案5篇(扩展3)
——《正比例》说课稿
《正比例》说课稿
作为一名优秀的教育工作者,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的《正比例》说课稿,希望能够帮助到大家。
《正比例》说课稿1
学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。这一课时的教学目标:
1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量。
2、培养学生仔细审题、认真思考、善于观察、探索规律的良好习惯。教学的重点:理解正比例的意义和性质。教学的难点;如何判断两种量是否成正比例的关系。为了突破重点,解决难点,适应新课程标准,我安排的教学过程主要体现在三个方面:
(一)、注重学生学会了什么
1、 引导学生学会观察,提高他们的观察能力。
在教学例
1,自学例2时,我都鼓励学生去观察,去探索。尤其是例1,通过学生观察,找出规律,填写表格。通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性。
2、 引导学生学会归纳,提高学生的语言**能力和表达能力。
在揭示成正比例的两种量的特点及性质时,让学生根据问题:1、表中有哪两种相关联的量?2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化的?3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来**、归纳、得出其性质和意义。
3、 引导学生学会互相合作,共同获取知识。
在例2的教学时,让学生进行四人小组合作共同来解决问题。小组中各个学生的知识水*、表达能力都有所不同,由于年龄的关系,往往大部分的学生在同伴面前能大胆地表达自己真实的想法,听取同伴的意见。通过学生间的互动,从你帮我,我帮你中加深对知识的印象。同时从整个过程中,学生会受同伴身上闪光点的影响,从而会更加激励自己。有的学生也会在整个过程中找回属于他们的自信。最重要的是:
让他们学会帮助别人,学会合作。
(二)、注重学生体会到了什么
1、 从自学中体会到靠自己的力量获取知识的成就感
在教学例2时,我安排了自学,让学生自主的去获取知识。每个学生都希望自己,的想法能跟老师的接近或相同,这样他们会有成就感,从而增强他们学好数学的信心。
2、 从讨论中,体会到人多力量大,“三个臭皮匠,顶个诸葛亮”的道理。
毕竟也只有13、14岁,语言的表达能力,**能力,归纳能力有限,考虑问题也有局限性。不管是优等生,还是落后生都或多或少存在着,但当他们将各自的想法整合起来,通过共同归纳、概括,得出较为完整的结论时,深深体会到个人的渺小,众人拾柴火焰高的道理。
(三)、注重学生感受到了什么
1、 让学生感受到学习的主人翁地位。
在整个教学过程中,我始终处在引导、辅助的地位。让学生成为课堂的主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属于他们的,这节课是属于他们的。
2、让学生感受到“我能行”
让每个学生都有回答问题的机会,这是我这节课的任务。让他们有展示自己才华的机会。有的学生可能只能说一句,有的学生可能会表达不清楚,但他们的勇气就值得我去表扬,去鼓励他们,让他们感受到“我能行”。今天他可能只会说一句,明天就可能说两句,后天他就可能将意思完整地表达出来。
总之,我在整个教学过程中试图想实现的目标是:还给学生属于他们的课堂,让他们在属于自己的空间里自主的获取知识,找回学习数学的自信。但,我的理论知识,教学检验都不够丰富,以上的教学设想仍显稚嫩,希望得到各位老师地指导,谢谢!
《正比例》说课稿2
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析
1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
二、学况分析
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
三、教法
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法
引导学生在观察比较的基础上,**思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程
本节课我安排了六个教学环节
第一个环节:游戏导入,激发兴趣
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验
用多**呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高
第六环节:全课小结
六、效果预测
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
《正比例》说课稿3
一、说教材,说学情
(一)说教材
教材在北师大版六年级上册安排了比的意义、比的化简与比的应用等内容。体会了生活中存在的变量之间的关系。正比例关系是数学中比较重要的一种数量关系,为此,教材密切联系学生已有的生活经验和学习经验,设计系列情景,让学生体会生活中存在着大量相关联的量,他们之间的关系有共同之处,从而引发学生的讨论与思考,并通过具体的讨论,使学生认识成正比例的量以及正比例在生活中的广泛存在。教材从不同的角度(实际生活、图形)提供了有利于学生探索并理解正比例意义的情景。
(二)说学生
学生在学习乘法的时,已经初步接触了正比例的变化规律,在六年级上册已经学习了比的意义、比的化简与比的应用等。学生最容易掌握的是判断有具体数据的两个量是否成正比例,最难掌握的是离开具体数据,判断两个量是否成正比例。
(三)说教学目标与重难点
根据以上分析,我确定本节课的教学目标如下:
知识与技能
1、经历正比例意义的建构过程,通过具体问题,具体情境认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。
过程与方法
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
情感态度与价值观
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
本着在新课程标准,在吃透教材基础上,我确定了以下教学重点和难点
教学重点:正确理解正比例的意义。
教学难点:能准确判断成正比例的量。
为了讲清教材的重难点,使学生能够达到本课题设定的教学目标,我再从教法我学法上谈谈。
二、说学法
在本节课中,我着重引导学生,在**思考的基础上,学会小组合作交流。具体表现在学会思考,学会观察,学会表达,学会思考教师要设计好问题,学会观察教师要指导学生观察表格和图像,学会表达教师要引导学生如何说,并对学生进行激励性的评价,让学生乐于说,善于说。
三、说教学过程
我们知道“学生是学习的主人,是知识的主动建构者,而教师则是学生学习的指导者,帮助者……”秉着这样的指导思想,整个设计力求体现“以学生发展为本”的教育理念,具体设计如下:
(一)在学生熟悉的生活中引入正比例的量
在生活中存在这许许多多变化的量,我们每个人从小到大身高体重会变化,时间会变化,年龄会变化。但是有时候两个量的变化并没有直接的联系,比如年龄的变化和汽车速度的变化。但也有这样的两个量,一个量会随着另一个量的变化而变化,比如买同一件东西,买的数量增加,应付的总价也要增加。
问:谁还能举出这样的两个量呢?
设计意图:这样设计,是为了激发学生学习的兴趣,较好地唤醒学生已有的知识经验,找到新旧知识的结合点。同时也为了引导学生学会观察思考,发现内在的规律。
教学效果与反思:
从实际效果看,这样的学习材料学生较感兴趣,能顺利地发现生活中存在的规律。我利用对学生的评价,引导学生学会观察思考。在学生回答完后评价:你真聪明,会发现生活中一些变化。这样一来,第二位学生就会继续往生活中学过的知识思考。
(二)自主建构正比例的量
通过具体问题认识成正比例的量,发现正比例量的特征,并能正确判断正比例的量是本节课的中心任务,为了突出重点,突破难点,发挥学生的主体作用,我在教学中安排了二次感知、体验正比例的活动:
(1)在比较中继续感受成正比例量的特征
引入正方形的周长与边长,正方形的面积与边长的变化情况,材料如下:
下面是边长与周长,边长与面积的变化情况,把表填写完整。
登录/注册后可查看大图
四人小组讨论,思考:哪一张表格的变化情况和前面的变化规律一样?
设计意图:
像这样同时出现正面与反面的例子,是为了让学生在比较中把握正比例量的本质特征。这样的比较,与教材安排相比,比较的时间推后了。
教学效果与反思:
教学时,学生通过四人小组讨论,顺利地完成了任务。课后反思,发现把比较的时间推后,学生理解较深刻,因为在前面探究正比例时,学生对正比例已经有了一定的认识,这样,比较时学生心中也就有了一个标准,容易找出成正比例的一组量了。
在此基础上,引入正比例量的图像,如下:
登录/注册后可查看大图
登录/注册后可查看大图
登录/注册后可查看大图
登录/注册后可查看大图
思考:这四张图如果让你来分类,你会怎么分?为什么这样分?
并进一步思考:其中三张怎么都呈直线状态,朝一个方向生长?(比值一定)
其中一张图为什么呈曲线状态?(比值不一定)
设计意图:
引入图像进行比较,是为了让学生对正比例的特征有更形象地认识,在头脑中形成更丰富的表象,达到数形结合,从而使学生真正建构正比例的意义。
教学效果及反思:
在教学中,学生能顺利地进行分类,并思考成正比例的图像呈直线发展的内在原因是比值一定。在此基础上,揭示课题,就是水到渠成,恰到好处。
(2)尝试归纳正比例的意义。
最后让学生在前面充分感知的基础上,尝试归纳正比例的意义,从而真正建构正比例的意义。
(三)应用提高
练习的设计力求体现多样性、层次性和发散性。如下:
1、小明和爸爸的年龄变化情况如下,把表填写完整。
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
父子的年龄成正比例吗?你怎么想的?
3、说说生活中成正比例的量。
第一题是不成正比例的,第二题是成正比例的,这两题都以表格的形式出现,第三题是让学生继续在生活中寻找成正比例的量,在这一练习中正比例的量不止一组,利于培养学生的发散性思维。
课后反思发现,在学生发现成正比例后,可以引导学生概括。
(四)小结提升
在小结提升阶段,我们要借助板书设计,帮助学生整理出本节课的重点和难点。
板书:
上完“正比例”后,发现学生在课堂上思维活跃,表达清楚,课后检测效果良好,反思我的教学,发现学生要成为学习的主人,离不开教师的主导,教师要做到精讲,给学生留出思考的空间,教师要设计好问题,引导学生学会思考,深入思考,教师要引导学生用语言表达自己的思维,先由教师引着说,再鼓励学生自己大胆地说,并进行激励性的评价,让学生乐说,会说。教师也要善于通过倾听加强对小组讨论的指导。总之一句话,我们要让学生成为学习的主人!
《正比例》说课稿4
各位**、各位评委,
你们好!今天我说课的课题是《画一画(即认识正比例图像)》,这是北师大版六年级数学下期第二单元《正比例和反比例》中第三节的内容。
一、教材:
《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。
教材安排这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。
对于这一内容的设计,我结合实际主要确定了三个知识与技能的目标,即:
1、在具体情景中,通过“画一画”的活动,初步认识正比例图像;
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;
3、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。
确定了两个情感目标,即:
1、培养学生善于思考和积极参与的良好习惯;
2、培养学生学习数学的兴趣。
其中重难点目标是:
1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;
2、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。
对于两个重难点目标,我将采取直观教学的形式(既PPT课件演示)和设计学生动手操作的练习题相结合,以此来分解难点,从而突破难点,化难为易。
二、教法:
在教学中,我主要采用了直观教学法、启发式**法、讲练结合法和激趣法。直观教学法就是利用PPT课件进行逐一演示,既演示解决问题的过程和方法,又演示解决问题的结果,使整个过程和方法都能清楚地展现在学生眼前,让学生更直观更形象地去感受和体验;启发式**法能激起学生的学习兴趣,引导他们思考与交流如:横轴表示什么?纵轴表示什么?你发现了什么?
讲练结合法就是利用我设计的帮助学生进行探索和研究的练习题,让学生自己在练习题上进行动手操作,并在操作中**思考,**发现,把自己的发现写下来;激趣法就是在学生进行第一次研究得出结论后为了进一步验证结论,我提出了激励性的问题鼓励学生进行两次探索与研究,如:真的是这样吗?我们继续来研究和探索……这样能激起学生的探索欲望和求知欲望,让学生觉得学得轻松,我也教得轻松,也增强了学生学习数学的兴趣。
三、学法:
在教学中,我主要以学生的动手活动和交流活动为主,即让学生在练习纸上动手画一画,连一连,写一写。通过学生自己描点连线,自己发现问题,得出结论,并写下来,然后在班上进行交流,学生很容易得出结论,在交流中让学生体验到成功的喜悦,既培养了学生的动手能力、操作能力和观察能力,又培养学生善于思考和积极参与的良好习惯,学生的自学能力也就提高了。
四、教学程序设计:
对于教学过程,我主要设计了五个步骤:
一、温故而知新。
我设计了两道题,都是用PPT课件展示出来,一是什么是正比例的填空题,二是判断两个相关联的两个量是不是成正比例。两道题的设计是为了让学生进一步认识什么是相关联的量和正比例的意义,能正确判断两个相关联的量是不是成正比例,既是复习旧知,也是为下一步学习作准备。
这一过程主要采取学生**——汇报交流——师生评价的方式。
二、初探尝试,引入新课。
首先用PPT课件展示出来,这一内容是教材第22页的内容,通过填表、说一说、连线、交流、展示等来揭示本节课的学习主题,提出悬念,激起学生的学习兴趣和探索欲望。
三、探索与研究。
这是本节课的主要内容,我结合实际安排了两个探索内容,是为了让学生通过探索与研究能更准确地从活动中得出结论,更深刻的理解正比例图像的特点,同时也能根据正比例图像的特点更准确地进行描点、连线和估计。
这一过程我主要采取了让学生动手画一画,连一连,写一写,说一说等方法让学生自己得出结论,同时利用PPT课件进行展示,加深学生的认识和理解,从而达到本节课的前两个教学目标。
四、反馈练习。
我安排了3道题,一题是判断是否成正比例,二题和三题是有关正比例图像的练习以及利用正比例图像和正比例关系解决生活中的一些问题,既加深了学生对正比例图像的理解,又能培养学生的解决问题的能力,使学生体会到数学与生活的联系。
练习题在我设计的题单中,同时我也利用PPT课件进行逐一展示,这样既保证了教学内容的完成,又能提高教学效益,使本节课的第3个教学目标得以完成,充分突破重点和难点。
五、课堂总结。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。
五、教学反思:
一、预测和估计
我估计学生大部分能参与活动,能顺利地完成教学目标,对于得出的结论,大部分学生可能轻而易举就会发现,可能有少部分学生不大理解正比例图像和不能正确利用正比例知识解决问题。同时,教学时间也许安排的不合理。
《正比例》说课稿5
各位**、各位老师:
大家好。
今天我说课的题目是六年级的《正比例的意义》一课。我将从教学背景分析、我的思考、教学目标、教学重难点、教学过程和教学特色六个方面来开展。
一、教学背景分析
1、教材分析
首先是这节课的教学背景,正比例的意义是小学数学“数与代数”当中重要的内容之一,也是学生系统学习函数的开始。提起函数,可以简单的说:函数是一种以运动和变化的观点来反映两种数量之间相互联系的一种数学模型。而正比例的意义,正比例关系也是当中最简单最线性的关系,其实在学生以往的学习过程当中,比如说探索规律,还有对数量关系、运算公式的学习,包括字母表示数以及统计图、统计表的认识,以及比和比例等内容,都为学生学习正比例的意义奠定了一定的知识基础。同时,正比例意义的学习将直接为反比例意义的学习提供研修方法和研修模式,又为后续的解决实际问题,乃至于将在初中系统的学习函数做好了知识和方法的准备。
2、学情分析
刚刚谈到了学生已有的知识经验,另外从学生的学习情况来考虑,在课前访谈中,通过学生对于涉及的两种相变化的量思考的时候,还能够结合自己充分的生活经验,举出了大量实例。比如在访谈中,当涉及到“两种相关联的量”这个话题的时候,有的孩子就说:大树生长的高度跟它生长的年份相关系,还有的说一天当中气温是随着时间的变化而发生变化的等等。这些展示出了孩子对于日常生活中那种变化现象的关注和探究的兴趣。但是不可否认的是从学生面对正比例的学习角度来看,这方面的学习还是存在一定的认知困难的,因为从研究数量关系的角度来看,应该说孩子对以往的数量关系,包括一些运算公式有了比较清晰的了解,比如说路程、时间、速度这组常见的数量关系,应该说孩子比较熟悉,但是还仅仅停留在对具体问题的解决上,而正比例的意义是要从一种运动和变化的观点去理解数量间的关系,要通过观察、分析两种数量之间的变化情况,变化规律,进而达到对两个变量关系的进一步理解。因此说学生对数量关系的认识和思考将从以往的静态过渡到今天的动态观察分析,乃至于抽象概括上来。这种研究问题的角度,学生相对来说还是比较陌生的。
二、我的思考
基于以上的了解,我进行了这样的思考。关于正比例意义的学习,是仅仅让学生记住描述正比例意义的一段文字,还是说仅仅让学生能够记住关于正比例的关系式,或者说能利用正比例意义,利用关系式进行判断等等。能做到这些就够了吗?经过思考,不难发现,事实上这些仅仅是基本知识、基本技能的层面,学生学习正比例的意义,应该在系统地认识所谓函数的这样一个大的背景下来展开,其更深远的价值在于学生以一种运动和变化的观点,变化的眼光来看待生活中的现象,应该在变化当中寻求对应关系,在对应中确定事物间的联系,从而实现从另外一个角度,或者说与以往观察的角度不同的理解,来促进学生进一步的理解常见的数量关系。基于这一部分内容的抽象性,也应该在教学过程中适当的采取文字、表格、关系式和图像等多种形式来促进学生的理解,从而有意义的建构正比例的意义。
三、教学目标
基于以上的思考,我制定了本课的教学目标如下:
1、在具体情境中认识成正比例的量,理解正比例的意义,并能结合生活实例进行判断。
2、在借助多种形式理解正比例意义的过程中,培养学生的观察、比较和抽象概括能力。
3、进一步体会数学与现实的密切联系,渗透数形结合思想和初步的函数思想。
四、教学重难点
本课的教学重点是理解正比例的意义,掌握正比例关系的判断方法。教学难点比较突出,通过多种形式的表征来丰富学生的认识,从而达到深入理解正比例的意义。
五、教学过程
第五方面是教学过程,我将从以下四个方面来进行。一是情境引入,初步感知,二是联系实际,建立意义,三是巩固练习,促进理解,四是质疑总结,拓展延伸。
1、情境引入,初步感知
首先是课堂的起始阶段,从情境引入,初步引发学生对两种相关联量的感知,出示这样一个实际的**表,是一个男孩的体重变化情况,从出生到七周岁,当然这个表格的出示可以用动态的形式来呈现,随着出生后年龄的变化,而逐个出示与之相对应体重的具体情况。当观察表格之后,明确引发学生思考:通过观察这个表格,你有什么发现?引发孩子具体观察里边的数据,当然这个过程学生很快就会意识到,这个小男孩的体重是随着他年龄的变化而变化的。从而产生两种相互依赖的相关联的量这样一层含义。而后是引导学生继续结合自己的日常生活举例,比如说刚才所提到的课前调研到的:树木生长的高度与年份的问题,包括孩子一些感兴趣的话题,都可以借助这个机会引导学生充分举例,老师适时的呈现关于这个树木生长的话题,以曲线统计图的形式来丰富学生的理解,进一步提高学生对于图像当中所反映问题的初步思考。
刚才的两个情境,其实并没有直接进入典型的正比例关系这样一个话题,而是从学生已有的生活经验出发,引导学生明确地认识到:只要是一种量变化,引起另一种量发生变化,那么这两种量就是相关联的量,并且充分感知,大量实例证明两种相关联的量在我们现实世界中是广泛存在的。以上是课堂的第一个环节。
2、联系实际,建立意义
第二是联系实际,建立意义的过程。首先呈现的是两幅表格,第一个是关于老师步行回家的时间和路程的统计表,还是以动态的逐个逐列的呈现形式来进行,老师步行回家1分钟80米,2分钟140米,一直到8分钟提出明确的与之相对应的问题:8分钟行多少米?第二个表格是国庆时三军仪仗队通过*受阅区时间和路程的统计表,形式大致相同,但是观察两个表格,可以明确引发学生进一步思考,在完成表格填空的过程中,不难发现,都是关于步行时间和路程的统计表。为什么第一幅表格不能确定准确的与8分钟相对应的路程,而第二幅表格却通过推算、简单的思考,能够确定出准确的路程呢?
那么,通过具体的观察、讨论,学生们可以明确的意识到虽然时间和路程这两种相关联的量是在不断发生着变化,这一点不容置疑,但是仔细观察,两种量中相对应的数据,我们也可以明确的发现,三军仪仗队通过*受阅区的时候,他们所步行的速度是保持不变的,也就是能够算出准确的与8分钟相对应的路程。当然这个素材的选取也是经过一定思考的,比如相关的还有一些信息也可以藉此机会给学生提供,比如说还是关于*受阅区三军仪仗队的通过问题,还有相关的信息,比如说每步行进75厘米,一分钟116步,通过*整个受阅区911步,分秒不差这样一个奇迹,增强学生的民族自豪感,从中也可以结合丰富的信息积累更多的经验,包括可以进行以后的初步判断等等。以上是第一个表格的问题。
第二个问题呢,是想丰富学生的进一步感知的材料,准备以单价、数量、总价这组常用的数量关系来进行,大致情况是这样的:首先是以图像的形式呈现部分数据,一个是苹果的质量,一个是总价。1千克对应的是5元,2千克对应的是10元,3千克对应的是15元,这里突出的是以图像的形式呈现对应。在此基础上,可以直观的发现苹果的单价,并且可以利用学生获取的这样一些数据信息,引发学生进一步思考:买6千克苹果需要多少元呢?这里学生可以借助单价进行简单的计算,从而确定出与6千克对应的点的位置,其实孩子可以借助刚才三个点的发展变化趋势,来推测出与6千克相对应的点的位置。而后可以进一步借助图像增进学生的理解,也就是还可以购买不同质量的苹果,而且都能在这个图中找出与之相对应的价钱。无数多个点集合在一起,并通过连点成线,就更明确地发现了事物的变化趋势,从而以运动和变化过程中的观点去认识变与不变的内在规律。当然还可以涉及到更多的价钱,乃至于0千克的价钱,从而完善了学生对这条直线的一个明确的认识。当然这个过程也是进一步让学生理解到总价是随着数量的变化而变化的,苹果的单价始终保持不变,所关注的还是内在规律,这样就把数据信息和图像信息有机的结合在一起。
接下来为了实现从图像和表格的多种形式融合,将上述内容移植到表格当中去,从而初步实现图像和表格的进一步沟通。通过以上两个情境的具体材料,应该说学生对于正比例的意义已经有了一个初步的认识。
接下来的环节就是借助刚刚两个事例引导学生进行明确的对比和沟通,从而找到两个事例当中的共同点。当然孩子可以借助自己的理解,用文字的形式进行表达,老师也可以进一步丰富学生的认识,可以借助手势的形式来进行。比如说刚才所提到的两个事例当中,都涉及到两种相关联的量,一种量变化,另一种量也随着变化。具体来说是一种量扩大,另一种量也随之扩大(手势),一种量缩小的话,另一种量也随之缩小(手势)。同时,这两种量中相对应的两个数的比值是保持不变的。从而以文字和手势的形式明确正比例的意义。当然还要引导学生进一步关注以关系式的形式来进行总结概括。这样的情况下,通常都可以采用一个关系式来进行,刚才所涉及到的路程、时间和速度,总价、数量和单价都可以用字母的形式来明确概括,即y/x=k(一定)的形式。从而初步引导学生用多种形式完成对正比例意义的初步概括。
以上这个环节给孩子提供了熟悉的情境,通过观察、分析、对比和抽象概括的过程,努力地抓住了示例中两个量变化的基本特点,进而总结和概括出正比例的意义。
3、巩固练习,促进理解
课堂的第三大环节是巩固练习,促进理解。首先是利用表格的一个判断形式,表格中所涉及到的是关于总价随着单价的变化而发生变化,但是始终不变的是什么?是买3只笔的这样一个常量。这道练习题目的设计,努力克服掉了刚刚学生所形成的总价/数量=单价(一定)的思维定式,从而实现关注整个事情变化两种相关联量的理解,以及到底谁没有发生变化这样一个关注点,进一步促进学生理解,同时,这里还有一个训练表达的问题。
第二个练习是进一步丰富学生的判断经验,引导学生用连贯的、完整的话来进行分析和判断。是判断下面问题中的两种量是否成正比例关系,第①个练习很清晰,每分钟打字50个,请思考打字的总数和打字的时间是否成正比例关系。这道题的训练目的是引导孩子初步形成判断正比例的方法以及表达的步骤。当然学生也可以举出实例,具体的数据加以解释说明。第②个判断的题目是正方形的周长与边长。它的目的是在于引导学生关注周长与边长之间固定不变的四倍关系这个常量的思考,从而引导学生进一步引发判断时应该注意关注对定量的思考。第③个是一本书有200页,每天读20页,看过的页数和剩下的页数, 这里明显是总和一定,从而进一步引发学生思考,判断两种量是否成正比例关系,至关重要的是看他们两种量行对应的比值是否一定,才能下结论。第④个是借助函数图像的形式来丰富学生的判断。就是以图像的形式来判断大树的生长时间和生长的高度是否成比例关系。当然这里还可以通过计算去解决,也可以通过直观预测和推断来完成判断过程。到15年后,大树的高度是不再生长的,现在不能准确说它成正比例关系。
4、质疑总结,拓展延伸
课堂最后一个环节是质疑总结,拓展延伸。通过设计这样一个开放一点的题目来进行,就是观察图中信息,你有什么发现?
这里还是以图像形式来进行的,引出香蕉和苹果两种水果的单价与总价之间变化情况图像,引发学生思考:这里学生的发现应该是开放的,可以借助直观的图像找到相对应的价钱,比如说香蕉3千克是24元,苹果5千克是20元等等找到单价,计算单价。也可以通过描述发展变化的情况,变化的规律进行准确地判断,总价是随着数量的变化而变化的,是成正比例关系的。还可以从另外一个角度来思考,两种线,蓝颜色的线和红颜色的线倾斜的角度是不一样的,从而初步渗透所谓的一次函数y=ks,k值的倾斜角度的感知和理解。以上是课堂的主体环节。
六、教学特色
如果从教学特色来看,有以下两点,一是关注知识系统抓本质,二是注重多种表达促理解。
以上只是基于已有的教学经验和对学生的初步了解所形成的教学设计,还需要进一步在教学实践中检验,也诚恳希望得到各位**和老师的宝贵意见。我的说课就到这里,谢谢大家。
《正比例》说课稿6
教学内容:
《义务教育课程标准实验教科书?数学》六年级下册39页~41页,成正比例的量。
本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。
学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。
教材分析:
对比新旧教材,我们不难发现新教材在保留原来表格的基础上,去除了表格下方的三个小问题,取而代之的是“体积和高度的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的**、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,例1通过研究圆柱形杯子的体积、底面积与高这三个数量的依存关系,使学生理解正比例的意义。教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。另外,增加了认识正比例关系的图像,例2让学生体会正比例图像的特点和作用,加深对正比例的认识。
设计理念:
教材的改动是为了让学生自己去寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的**,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,(从这一句可以看出,为了提高课堂教学效率,在修改稿中不再回避而是接纳和提倡接受学习)学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面:
一、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的**者与引导者。
二、努力实现扶与放的****,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。
教学目标:
基于对教材的`理解和分析,我将该节课的教学目标定位为:
知识与技能目标:帮助学生理解正比例的意义。用表示变量之间的关系,初步体会正比例图像的特点和作用,加深对正比例的认识。
过程与方法目标:通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
情感目标:学生在自主探索,合作交流中获得
积极的数学情感体验,得到必要的数学思维训练。
【教学重点】
理解正比例的意义。
【教学难点】
引导学生通过观察、思考发现两种相关联的量的比值一定,概括出成正比例的概念。下面我侧重谈谈对这节课重难点的处理:正比例的量是比较抽象的概念,学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,**能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。
教学过程:
四、说教学策略和方法
一、观察实验,引入新课
首先提供情景素材,首次感知。教材呈现了用相同的圆柱形杯子装水的实验,以列表的形式给出了装水的高度和相应体积的实验数据,让学生填写对应的底面积。我这节课是用多**呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律,以观察试验引入新课,很快将学生带进新的探索过程中。一句,通过刚才的实验,你发现了什么?这样一个开放性的问题也开放了学生的思维,也让学生一下打开话匣子,为开课创造了宽松的氛围,同时对于学生理解正比例关系也是很有帮助的。
接下来教师引导,学生自主探究成正比例的量
这个环节分为了四层:观察――讨论――再观察――再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
本环节将书中的表格分两层呈现,首先出示实验数据报告单,让学生观察表格,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格2,让学生计算杯子的地面积,让学生体会到体积和高度的比值相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:体积和高度这两种变化的量具有什么特征?学生讨论汇报后,可引导学生归纳:水的体积随着高度变化,它们是两种相关联的量;高度增加、体积也增加,高度降低、体积减少,但体积和高度的比值总是一定的。并用“”来表示“高度、体积、底面积”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的体积和高度是成正比例的量,体积和高度成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生**经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式=k(一定)和正比例图像表示正比例关系,让学生继续体会,当学生真正建立起正比例的概念,进行了对比练习后,再接着让学生来说。
由于学生有折线统计图和数对的相关知识经验,所以在对*面直角坐标系做简单介绍后,放手让学生自己多少制作正比例图像,让学生在解决问题的过程中进一步体会正比例图像的特点和作用,加深对正比例的认识。
最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。
《正比例》说课稿7
一、教学内容
“正比例的意义”是义务教育课程标准实验教材六年级数学下册第39、40、44、45页的内容。
本节课是在比和比例的基础上进行教学的,学生理解并掌握了正比例这种数量关系,可以加深对比例的理解,并能解决一些含正比例关系的实际问题,同时进一步渗透函数思想,为今后学习打下良好基础。
二、课标中的陈述如下:
1、通过具体问题认识成正比例的量。
2、能找出生活中成正比例量的实例,并进行交流。
三、依据课程标准和学生的认知基础及规律,制定学习目标如下:
1、通过观察、比较、分析、讨论等活动,理解正比例的意义,会准确判断两种量是不是正比例关系。
2、通过思考,正确写出正比例字母表达式。
3、根据正比例的意义,学生会正确的找出生活中的实例,并进行交流。
4、学生在具体的问题中体会函数思想。
四、在本节课中,理解正比例的意义,正确判断两种量是否是正比例关系,既是学习的重点也是难点。
五、教法学法
我们都知道,数学是思维的体操。正比例的意义是很抽象的概念,为了使这冰冷的美丽成为学生火热的思考,教法学法如下:
1、学法:
通过学生的观察、比较、分析和讨论,独学对学群学相结合,呈现学习、反馈、展示的学习方法。
2、教法:
巧妙创设情境,设计以点带面的问题,点燃学生思维的火花。
这样的教法、学法,师生互动、生生互动,由表及里,循序渐进,学习目标将得到有效的评价和落实。
六、为有效达成学习目标,评价设计如下。
1、根据具体实例和表格进行观察分析讨论,来理解正比例的意义。根据目标达成检测、知识拓展和作业1、2的题目,通过**、学生表述来对目标1进行评价。(表现性评价)
2、根据老师的引导和学生的思考,写出正比例关系的表达式,对目标2进行评价。(纸笔评价)
3、根据学生的讨论和汇报情况来对目标3进行评价。(表现性评价)
4、根据学生对正比例意义理解的表述,对目标4进行评价。(表现性评价)
在此叙述是索然无味的,因此不再一一陈述,将会在学习预案中体现。评价设计会像傲雪的红梅一样,镶嵌在学习预案中,绽放独有的美丽。
七、学习活动预案
(一)情境导入
首先,通过一首诗来导入新课。
出示图片及诗词:
西江月夜行黄沙道中
宋辛弃疾
明月别枝惊鹊,清风半夜鸣蝉。
稻花香里说丰年,听取蛙声一片。
请你用数学的眼睛来观察这首诗,你发现了什么?
学生会从“听取蛙声一片”这句中感受到青蛙有很多。
看来青蛙好多呀!同学们,一只青蛙几条腿?两只呢?三只呢?……。青蛙的只数和腿的条数之间存在什么关系呢?这就是我们这节课要研究的内容。在这首诗中,有一句诗,也和我们今天的学习内容有点联系呢,看谁到最后有所发现。
这样的导入,将会极大的激发学生探究的兴趣。
(二)探究新知
1、出示表格:
青蛙只数
1只
2只
3只
4只
…
腿的条数
4条
8条
12条
16条
…
2、观察表格。
(1)请同学们认真观察表格,你发现了什么?
这个问题比较宽泛,给学生充分的思维空间,尊重学生的主体地位。
学生也许会从左向右观察,发现青蛙的只数增加,腿的条数也增加;
学生也许会从右向左观察,发现青蛙的只数减少,腿的条数也减少;
腿的条数随着青蛙的只数变化而变化,像这样一种量随着另一种发生变化,二者之间有必然的联系,这样的两种量就是两种相关联的量。
腿的条数和青蛙的只数就是两种相关联的量。
板书:两种相关联的量
(2)这两种相关联的量,变化规律是怎样的呢?
学生会发现,
青蛙的只数增加,腿的条数也增加;青蛙的只数减少,腿的条数也减少;
这说明两者的变化规律是一致的。
板书:变化规律一致。
(3)你还有什么发现呢?
此时,学生也许会从纵向的观察中发现,青蛙的只数是腿数的四分之一或腿数是只数的4倍,两者之间的商或者比值是不变的。
不变,在数学上称为一定。
板书:比值(商)一定
3、此时,依据板书小结,两种量具备了这样的三点特征,这样的两种量就是成正比例的量,
板书:成正比例的量
两种量的关系就是正比例关系。
板书:正比例关系
今天我们研究的就是正比例的意义。正比例关系是数学世界中“变与不变”奥秘中的一种。
板书:正比例的意义变与不变
4、通过观察、思考、展示和反馈,学生对正比例意义这一抽象概念已经有了初步的认识,因此,放手让学生自学课本第39页,通过反馈质疑,明确底面积一定时,体积和高是正比例关系。
5、小结。
通过两个实例,学生对正比例的理解有了较深的认识,及时的小结判断两种量是正比例关系的方法。回忆例子,结合板书,首先要看什么呢?再看什么?最后看什么?
上述学习过程,由形象到抽象,通过对观察、分析、讨论情况的评价,初步达成目标1和4。
6、引导学生用字母式子来表示正比例关系。
通过刚才的实例,学生会发现,用语言来叙述正比例的意义,很麻烦。数学,是一种简洁的美。怎样能够简单明了的表示出来呢?回忆学过的乘法分配律,对,用字母表达式。正比例关系也可以用字母式子表示。Y表示比的前项,X表示比的后项,K表示比值。请同学们写出来。
板书:=K(一定)
依据学生写的情况,对目标2进行评价。
7、接下来,请同学们根据正比例的意义,找出生活中那些成正比例的量,并进行交流。
通过对交流情况的评价,达成目标3。
为了更加有效的检查学生的学习情况,设计目标达成检测如下:
(三)、目标达成检测
1、出示表1和表2,这是汽车和自行车所行时间和路程情况统计表。
表一:
时间(小时)
1
2
3
4
5
6
……
路程(千米)
60
120
180
240
……
表二:
时间(小时)
1
2
3
4
5
6
……
路程(千米)
20
36
45
64
……
(1)你能不能把表格填完整?
(2)面对这两个表格,结合正比例的意义,你有什么想法?
此题的设计重在通过比较,让学生理解两种相关联的量只有在比值一定的情况下才是正比例关系。当两种量的比值一定时,肯定是相关联的量,变化规律也肯定一致。因此,只要判断出两种量的比值一定,二者就是正比例关系。从而简化思维的过程,便于理解掌握。
2、判断下面每题中的两个量是否成正比例,并说明理由。
(1)长方形的长一定,面积和宽。()
(2)减数一定,被减数和差。()
(3)单价一定,总价和数量。()
(4)每袋水泥质量一定,水泥袋数和总质量。()
(5)正方形的周长和边长。()
第2小题需要学生注意,减数一定,减数是被减数减差得到的,不是相除得到的,不是比值一定,所以不是正比例关系。
(四)知识拓展
如何测量金字塔的高度?
师:你们知道怎样测量金字塔的高度吗?在2600年前的古埃及,泰勒斯做了一个实验,在同一时间,同一地点,把很多长度不同的竹竿插在地上,分别测量了竹竿和影子的长度。
竹竿/m
1
1.5
2
2.5
…
影长/m
0.8
1.2
1.6
2
…
出示表格:看一看你又发现了什么?
泰勒斯就是运用物体的高度和物体的影长成正比例的关系来求出金字塔高度的。想知道吗?请同学们课下研究吧!
课堂要成为学生思维灵动的舞台,探究的欲望是火热思考的桥梁。
此环节的设计重在通过测量金字塔的高度,加深对正比例意义的理解,同时激发学生求知的欲望,深刻感受数学与生活的密切联系。
通过学生对正比例意义理解的表述和相关问题的解答,老师进行合理的评价,循序渐进中,进一步完成目标1和4。
(五)小结激励
(通过本节课的学习,你有什么收获?)
此环节重在激励学生,做生活的有心人,不断去发现和探索其中的奥秘!
回到课始的那首诗,哪一句和正比例有一点联系呢?稻花香里说丰年。对了,稻花飘香,预示着农民的辛苦劳作将有一个好的收成。常说,付出和收获要成正比,这是人们的美好愿望。老师也祝愿同学们在学**付出和收获成正比例,取得优异成绩!
(六)、布置作业
课本第44页第1、2题。
这样的教学设计,充分尊重学生的主体地位,让每一个学生的思维动起来,让每一个细胞都翩翩起舞,让课堂散发出思考的香味,有效的达成学习目标。
八、板书设计
正比例的意义
1、两种相关联的量
成正比例的量
2、变化规律一致
正比例关系
3、比值(商)一定
《正比例》说课稿8
一、说教材。
我说的内容是九年义务教育六年制小学数学第十二册第一单元中的《成正比例的量》这部分内容是在教学比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正比例方面的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习中学数学和物理化学打下基础。
根据本课的具体内容,《数学课程标准》的有关要求和学生的年龄特点,我从知识技能、能力特点及情感态度三个方面确立了本课的教学目标。
二、说教学目标。
(1)使学生通过具体问题认识正比例的量,理解正比例的意义,能工巧匠有根据正比例的意义判断两种量是不是成正比例。
(2)引导学生通过观察、交流、归纳、推断等数学活动,感受数学思维的全过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。
(3)通过引导学生探索知识间的内在联系,激发学生的兴趣,增强学生的审美意识。
三、说教学重点,难点。
教学重点是理解正比例的意义,教学难点通过具体问题来理解正比例的意义
四、说教法、学法。
如何突出重点,突破难点,完成上述的三维目标呢?根据《新课程标准》要求和教材的编排特点,我遵循教师为主导,学生为主体,训练为主线的指导思想,本节课我采用多**为主要的教学**,以分组合作学习为产要方式来进行教学,主要采取让学生在自主、合作探究中通过多个例证,从多角度、多层次来归纳正比例的特征。
采取以上步骤的根据是学习比例的知识不能靠直观演示、操作,来获取知识,主要靠实际例子通过观察、比较归纳、推断等数学活动来获取知识,这样克服了比例意义教学中重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病,突出教学重点,突破了教学难点。
为了理好的实现教学目标,我准备的教具是多**课件和展示台
教学目标的实现,教学重点的突出,难点的突破以及教法的实施,教具的应用均要体现在课堂教学上
五、教学过程。
第一个环节是铺垫孕伏,导入新课。
在这个环节里,我首先是让学生复习常见的数量关系,然后让学生根据一辆汽车行驶的路和时间说出路和时间的比.老师接着说,在日常生活中,我们还要遇到许多数量,这些数量间藏在许多小秘密,这节课我们就来研究这些数量间的一些规律和特征,,直接导入新课.
第二环节、合作交流、探究新知。
这一环节是学生获取新知的过程,教学中我以学生自产探索为主,合伯交流为辅,教师问题为桥的教学思路展开的,这个环节我分四个步骤来完成:
第一个步骤、师生携手,共同解决问题。
《新课程标准》中要求:注重培养学生的**性和自主性,引导学生质疑、**、探究。在实践中学习,促进学生在教师指导下主动地富有的学习,所以我请同学们观察刚才汽车路程和时间的统计表,让他们先**思考,再讨论交流,回答、以下的问题(用多媒全出示)
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还可以从表中发现哪些规律?
学交流后回答,师随着学生的回答作必要的板书
时间和路程这两种量,时间扩大,路程也随着扩大。路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的,在学生回答后即使还很完整也给予学生充分的肯定,
让他们享受到成功的喜悦。
第二步骤、自主探究、获取新知。
在这步骤中学生装已基本掌握了探求正比例关系的方法,我出示例2后,直接说:请同学们利用我们研究例1的步骤和研究方法,自己来研究一下布的数量和总价,你们又发现了什么?
《正比例》说课稿9
赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节
课的个人看法:
一、注重数学和生活的联系,课堂灵活开放。
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的***,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
二、如花微笑,温暖学生。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了**的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
三、用问题引领学生,突出学生的主体地位。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
《正比例》说课稿10
说教材
《比例尺》是九年义务人教版小学数学第十二册第三单元《正比例和反比例》一章的最后一个内容。比例尺在人们的生活中应用广泛。这课内容是在学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识,正比例和乘除法意义的综合应用。本课要求学生要充分理解和掌握比的意义,根据乘除法的意义来求比例尺、图上距离和实际距离。
说学习目标
《新课标》指出;“数学教学应联系生活实际,让学生亲身经历知识产生、形成的必要性,感受数学的力量,激发学习数学兴趣。为此,我制定以下学习目标:
1、学生理解比例尺的意义,学会求比例尺。
2、学生经历比例尺产生过程和探究比例尺应用的过程,提生解决实际问题的能力。
3、结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
学习重点:
重点是理解比例尺的概念,根据比例尺的意义求出比例尺。学习难点:是从不同角度理解比例尺的意义。
说学法
本节课主要采取讨论、交流、自主学习、合作学习的学习形式。为学生创设“笑笑家*面图”这一情境,通过教师点拨、引导,让学生在操作中体会“比例尺”在生活中的必要性,从而掌握比例尺的计算公式:比例尺=图上距离÷实际距离。在比例尺的计算公式基础上,教师点拨学生利用已学的知识,自主学习,常识解答。总结求比例尺、图上距离和实际距离的方法。整节充分体现“学生为主、教师为辅。”的教学理念。让学生积极参与,提高学习数学的乐趣。
说导学设计
一、情境导入
师:同学们,我们的祖国历史悠久,地域辽阔,大约有960万*方千米。如果我们想把整个*的地域一眼看尽,有没有可能?
师:对,今天老师就把*地图搬进了课堂。
(出示一幅*地图)
师:你们知道人们是怎样把960万*方千米的大*画在这张没有半个黑板大的地图上的吗?
生:把它缩小。
师:对了,就是把我们的祖国缩小画在地图上的。老师这里还有一幅*地图,请同学们认真观察这两幅地图,你有什么发现?
生:它们的大小变了,形状没有变。
师:为什么大小变了,而形状没有变呢?
生:因为它们缩小的倍数不同,所以大小不同,而形状相同。
再出示一副螺丝钉的放大图。
师:这幅图是否能很清楚地看到它的螺纹?
师:在日常生活中人们经常要用到把一些实际的物体缩小或扩大一定的倍数画成*面图。
师:同学们想不想也亲手试一试,把我们的教室*面图画出来呢?
二、探究新知
师:下面就请你们来当一个小小的***,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的*面图画在老师发给你的白纸上,并完成表格。
在下表中填出图上的长、宽与实际的长、宽的比,并化简。
图上距离:
实际距离=图上距离与实际距离的比
师:同学们的作品都完成了,请你们在小组里交流自己的作品,重点交流你是怎么确定图上的长和宽的距离。
学生汇报。
(师选出大小不同的作品贴在黑板上)
师:我们请这些作品的设计者来说说你们是怎样设计的,并指出你所画的*面图的图上距离和实际距离各是多少,它们的比值是多少。
师根据学生的回答板书:
图上距离:实际距离
(1)8厘米:8米=8:800=1:100
6厘米:6米=6:600=1:100
(2)4厘米:8米=4:800=1:200
3厘米:6米=3:600=1:200
师:通过刚才的活动,我们知道图上距离与实际距离之间存在着一种倍数关系,这就是今天我们要研究的新知识——比例尺(板书课题)
师:什么是比例尺呢?谁能用自己的话来说一说?
师根据学生的回答板书。(强调第二种写法)
师(指着贴在黑板上的教室*面图)这些*面图的比例尺各是多少?
三、解决问题
师:同学们已经认识了比例尺,请同学上前台找到两幅*地图上的比例尺。
生找到,教师板书:
1:600000
请学生说说这个比例尺所表示的意思。
鼓励学生有不同的说法。
出示线段比例尺,请学生思考表示什么意思。
学生汇报。
学生尝试把线段比例尺改写成数值比例尺。
指名板演。
集体订正。强调书写格式。
在出示螺丝钉放大图的比例尺:60:1
与上面的比例尺比较,有什么不同。
总结相同的和不同的。
四、巩固练习
1、做一做。学生**完成,指名板演。
集体订正。
2、判断下列这段话中,哪些是比例尺,哪些不是?为什么?
五、课堂小结
今天这节课你有什么收获?
六、课外作业
《正比例》说课稿11
一、教材分析
1、教材的地位与作用
《正比例函数》是九年制义务教育新课程标准八年级第一学期第二十一章的内容。从比例中的两个量的比值是一个定值,得出两个量成正比例的概念。学生已经学习了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。再从正比例关系到正比例函数,从互相联系的两个变量在变化过程中有互相依从,互相制约的关系,初步引出函数的概念。因此,本节课具有承上启下的重要作用,函数思想是一种重要的数学思想,它体现了运动变化和对立**的观点,体现了数学的建模思想和数形结合思想,对于初次接触到函数的学生而言,理解函数的意义是个难点。因此本节课在教学中力图向学生展示常见问题中的变量,和变量之间的关系,使学生对以后函数的定义有一定的了解。
2、教学目标
根据上述教材结构与分析,考虑到学生已有的认知结构和心理特征,我制定如下目标:
1、理解正比例函数及正比例的意义;
2、根据正比例的意义判定两个变量之间是否成正比例关系;
3、识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。
3、教学重点:
理解正比例和正比例函数的意义
4、教学难点:
判定两个变量之间是否存在正比例的关系
二、学生情况
在这节课之前,学生已经掌握了比例的意义和性质,对正比例的定义的掌握没有什么问题。对根据给出的实际问题,列代数式或是列方程都有一定的训练。
三、教学方法
本节课的难点是理解现实问题中是否存在变量,并能判定两个变量之间是否存在正比例的关系,通过教师的引导,启发调动学生的积极性,让学生在课堂上多观察,多练习,主动参与到整个教学活动中来,通过观察能发现正比例函数的特点,教师的主导作用与学生主体地位达到了相互**。
四、学法指导
通过本节课的教学,教师引导学生学会观察、归纳的学习方法,培养探究、自主学习能力。
五、教学过程(课件展示)
活动1:问题的引入
通过“路程问题”建立数学模型,理解路程与时间的对应函数关系,为导出正比例函数做铺垫。
活动2:变量的学习
通过几个具体实例,概括、归纳导入变量,常量函数的概念。
活动3:正比例行数概念的学习
通过几个具体实例,概括、归纳出一类具有共性的函数关系式,导入正比例函数的概念。
活动4:正比例函数关系特征的探究
通过对正比例函数的理解,能用待定系数法求得正比例函数的解析式
活动5:小结与练习
让学生讨论小结并允许答案不同,可以增强学生学习的积极性和主动性,培养他们对所学知识养成顾回顾思考的好习惯。同时,通过小结也强调了本节课的重点,巩固了学习内容。
六、教学设计说明
本节内容是在学生学习了比例的概念基础上进行的,学习正比例、正比例函数,再引入反比例函数和函数有利于降低教学难度,使难点分散。
在处理教材方面,采取“建立数学模型——导入概念——巩固概念——小结、练习”这样秩序渐进的教学流程。
由于本节课内容概念性强,所以我采取通过学生熟悉的行程问题来导入正比例函数的概念,学生易于接受。
在教学设计时,注重了学生的模拟和尝试,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,对关键之处的启发、点拨和讲解,有利于学生对概念的理解。
《正比例》说课稿12
老师执教的《正比例的意义》这课,对我感受很深。
一.结合生活实际
周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。
二.突出学生的主体地位
周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。
三.练习设计具有阶梯性
周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。
建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。
《正比例》说课稿13
教材分析:正比例的意义是九年义务教育六年制小学浙教版第十二册第3单元的内容。这部分知识是在学生学习了除法、分数和比的知识等的基础上教学的,是本套教材教学内容的最后一个单元。教材通过实例说明两种相关联的量,一种量随着另一种量的变化而变化。一种量扩大,另一种量随着扩大;一种量缩小,另一种量也随着缩小。并且从具体的数据中看出:这两种相关联的量扩大、缩小的变化规律是它们相对应的两个数的比值(商)总是一定的,写成关系式就是:xy=k(一定),从而给出正比例的意义。通过正比例意义的教学,向学生渗透初步的函数思想。
1、使学生掌握正比例的意义及字母表达式,会正确判断两个量是不是成正比例关系的两个量。
2、通过对比、观察、归纳、培养学生良好的数学学**惯。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。正确理解正比例的意义,并能准确判断成正比例的量。为了使学生掌握好反比例的意义这部分知识,达到以上的教学目的,突破以上教学重难点,教师采用迁移法、对比法、引导法、讲解法、联系法、自主探索法来进行教学。通过本课教学,使学生学会利用旧知构建新知的方法、合作探究的方法、分析小结的方法等等。
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水*不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。这节课通过具体实例,借助事物表象,引导学生逐步了解数量之间的内在联系,从而发现两种相关联量的变化规律。在教学过程中,面向全体学生,创设情境,激发学习兴趣,调动学生主动探索规律的积极性,重视初步逻辑思维能力的培养。练习设计,具有坡度,深化拓宽了所学知识,有利于提高学生的思维品质。
《正比例》说课稿14
1.联系生活,从生活中引入,激发了学生学习兴趣。
数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。
2.有效地处理教材,让学生亲身经历数学模型的形成过程。
《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的**的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。
3、服务于生活,回到生活中去,解决生活中的实际问题。
在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。
《正比例》说课稿15
教学内容:
本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。
学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。
教材分析:
对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的**、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。
设计理念:
教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的**,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面:
1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的**者与引导者。
2、努力实现扶与放的****,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。
教学目标:
基于对教材的理解和分析,我将该节课的教学目标定位为:
1、帮助学生理解正比例的意义。用字母表示变量之间的关系,加深对正比例的认识。
2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。
教学重难点:
下面我侧重谈谈对这节课重难点的处理:学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,**能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。
教学过程:
说教学策略和方法,引入新课。
首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格表格,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例,“周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生**经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。
最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。
《正比例》教案5篇(扩展4)
——《正比例》教学反思10篇
《正比例》教学反思1
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学**与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
通过这节课的教学我深深的体会到要上一堂数学课难,上好一堂数学课更难,课前虽做了充分的准备,但还是存在不少问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。参与学生的探究不够。亲其师信其道,那么亲其生知其道不为过,真正融入学生才能体会学生的思想才能真正落实教学新理念。
当然,教学过程中还或多或少存在其它的问题,但有问题就有收获,在以后的教学中,认真反思,仔细分析,查找根源寻求对策,在教学的道路上不断攀登。
《正比例》教学反思2
本节课对学生是新的知识点,在实施授课时,我先用“时间和路程”的表格,出示三个问题逐一引导学生(①表格里有几种量?分别是什么?②当一种量变化(增大)时,另一种量怎样?③两种量中相对应的两个数的比是什么?比值分别是什么?)。
学生很清晰地回答了①和②两个问题,当回答第②个问题时,告诉他们像这样,两种相关联的量一种量变化,另一种量也随它变化。对第③个问题,学生能说出比是速度,比值都是一样的,即90千米/小时,进而引导学生如果两种相关联的量中相对应的两个数的比值一定时,小学数学教学反思,这两种量叫做成正比例的量,表中的路程和时间是成正比例的量。学生感到很好理解,也很明白。可当我问单价一定,数量和总价是不是相关联的量?为什么?点到的学生都说是,但说到原因时,都认为是比值一定,所以是相关联的量。看来学生对“相关联的量”和“成正比例的量”理解不清,又举了一些例子,结合定义,学生才理解。
下课后,我在想原因,是不是把“相关联的量”和“成正比例的量”一下给学生,对学生来说都是新名词,出现了听起来明白,用起来不会的现象。结合我的思考。在第二个班上课时,我先把“相关联的量”引入后,给学生举一些相关联的量的例子,又让学生举例,接着让学生总结如何判断两种量是否是相关联的量,随后举出一本书看的页数和剩下的页数、路程和时间、圆的周长和半径,让学生分别求两种量的比值,学生发现,有的比值是同一个数,有的是不同的数,进而告诉学生成正比例的量的概念。
第二个班的学生对练习的回答情况,可以看出学生掌握的较好。我感到分两次把概念给他们,并把每一个都讲透,学生会学的很快,我们讲的也很轻松。
两节课后,同组交流时,刘老师还告诉我一种设计方法,由圆引入,半径和周长、半径和面积,它们都是两关联的量,一个是成正比例的量,一个不是。我感觉这种设计方案也很好,有机会的一定试试。
《正比例》教学反思3
反思整节课,体现了让学生自主探究,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的实现了事先的教学设想。在实际教学中,我注意了以下几点:
一、从观察中思考
小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让学生自己再设计一种情景,并引导学生进行观察,从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让全体学生在观察中思考、在思考中探索、在探索中获得新知,**地提高了学习的效率。
二、在合作中感悟
新的'数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两个相关联的量后,让学生采取同桌两人互相说说的方式自学例2,在小组里进行合作讨论,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
三、在生活中运用
课堂教学应该着力于体现“小课堂、大社会”的理念,为此,在归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系,培养学生综合运用知识的能力,从而体会到数学的内在价值。
四、在练习中提升
为了及时巩固新知识,设计了几道练习题后,又设计了两道加深题,让学生巩固本节课知识。通过练习,要求逐步提高,学生的思维也得到了提高;最后引导学生自己对知识进行梳理,培养学生的归纳能力,使学生进一步掌握了正比例的意义。
但在教学正反比例意义时还是有很多不尽如人意的地方。整堂课,由于量比较大,虽然设计比较到位,但由于把握不够,显得有些着急,而且乱,今后教学中应努力改进。
这堂课,对教材中几个概念,在理解上仍存在一些问题。比如,什么样的两种量叫做相关量的两种量,课本上的概念是:一种量变化,另一种量也随着变化。那么一个人的身高和体重算不算两种相关联的量,可以说从一定程度上或多或少有点相关,但是在一定程度上又不相关,比如人到长大以后开始发胖,身高不变,体重变化,这又这么说?
《正比例》教学反思4
学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础。学生理解正比例的意义时比较困难,为此,我密切联系学生已有的生活经验和学习经验,设计了一系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量以及明确正比例在实际生活中的广泛应用。
课堂上我设计了正方形的周长与边长、面积与边长的变化关系。通过表格、图像、表达式的比较,使学生体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,也让学生初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化;第三个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。
通过以上实例,引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”的意义。最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:1.两种变量是不是相关联的量;2.在变化的过程中,这两种量比值是否一定。
在巩固练习题中我让学生大量的复习了常见的数量关系。对于一些学生较容易出现错误的题目进行重点的讲解。例:圆柱的底面积一定,体积与高成什么比例;圆的周长与半径成正比例;圆的面积与半径是否成比例;人的身高与年龄是否成比例;一瓶矿泉水,喝掉的和瓶里剩下的水是否成比例……等等。
但是在教学中同样也感觉到,由于这个概念比较长,所以对于学生来说这个意义记忆下来是比较困难的,特别是对一些学习困难的学生。所以我也教给学生一定的方法,抓住句中的重点,通过理解来记忆。让学生通过相互之间说,前后同桌检查,达到对该概念的熟练叙述。
《正比例》教学反思5
这节《正比例的意义》的教研课,已经讲完大约一个月的时间了,可是我的教学反思却迟迟没有交上来,不是没有反思的地方,而是反思的地方太多了,我都不知道该从如何下手去写了。这节《正比例的意义》是北师版六年级下册的内容,是学生在学习了比的概念及求比值的基础上进一步学习比例,又是反比例和比例尺学习的基础。引导学生理解正比例的意义,学会分析两个量是否成正比例关系的方法是本课的重点。
考虑到学生学习的难度和班级的具体情况,我的这堂课采用以学定教的生本课堂教学模式。我没有用课件,没有在多功能大厅里讲,没有事先对孩子进行提示(以往在讲教研课的时候都有“**”的嫌疑),只是按照我校课改的方向,课前给孩子布置了学案,而且是两个学案,让学生**的选择其中的一个,让孩子通过自学,完成学案。至于课堂上会出现什么情况,我真的是毫无所知,不像以往,在哪个环节讲什么学生怎么答,我心里有数,可是这次不一样。我就是要把实际中的课堂模式展现给同事们和**。
课前我也做了大量的准备,认真的备教材备学生。把学案、习题写在了大白纸上,让同学们一目了然。在整个教研的过程中,虽然我完成了预期的教学目的,学生也能把学案上的问题归纳概括出来,但是课堂气氛不活跃,学生不主动举手,要点名才能***回答,也不能主动的提出疑问。小组讨论的时候也不热烈。流于形式了。更没有好的生成。还是没有脱离原来的教学模式。
课后呢,我在想课堂气氛不活跃,可能一小部分的原因吧,是由于六年级的孩子大了,发言的时候有了顾虑,怕说不好或不对,另一部分我想就是这个形式可能孩子们还没有适应过来,换一句准确的话,就是做为老师的我还没有引导孩子主动的去发言去探索。实施新课改,课前给学生布置学案,我大概到我讲这节教研课的时候有一个月的时间,还真的没有摸到门路,只是摸着****。老师都如此,何况孩子们。今后这就要看老师的驾驭、引导的能力了。
当然也不都是不足,课后我把学案拿过来看了看,学生都能把学案完成,而且归纳的也不错,只是不善于表达而已,这也是说明课改是正确的,它激发了学生的求知欲。而且我也告诉了大家,没有条件用多**教学时,在班级用这种最古老最常见的小黑板的方式出现问题,也不错呦。
总之了,我还在摸索中前进。还有很多值得反思的地方,但心里有却写不出来。哎。
《正比例》教学反思6
正比例的知识,是六年级的教学内容,是在学生已经学习了比和学会了分析基本数量关系的基础上进行学习的,是学生学习反比例知识以及进一步研究数量关系的基础,内容抽象,学生难以接受。因此,使学生正确的理解正比例的意义是本节课的重点和难点。我在实际教学中,总体来说是比较成功的。主要体现在以下几点:
1、从生活中引入
数学来源于生活,又运用于生活。所以我从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有相互关联的两种量。如:一个人的“体重”与“年龄”;从家到学校“已经走过的路程”和“剩余的路程”……等等。然后出示一组具有正比例特点的例子,再**学生进行探究活动。
2、在探究中发现
探究学习是我们学习数学的基本方法之一,也是我们研究解决问题的重要方法。本课教学中,我通过表格列举出两种变化的数量在一定的情况下变化的数据,引导学生进行探究,从而自己发现两种相关联的量,一种扩大(或缩小)若干倍时,另一种也扩大(或缩小)相同的倍数,而且这两种数量对应的数的比值始终不变。从而理解正比例概念的本质特征。在教学中,使学生在观察、思考、探究中获得新知,充分发挥了学生的主体作用,**地提高了学习的效率和学习兴趣。
3、在交流中升华
在本课的设计中,我本着“以学生为主体”的理念,运用启发式的教学原则,给学生以充分交流的时间、空间,**学生以小组的形式,进行合作交流,使学生把探究中的发现,通过相互交流的形式进行展示,使每个学生不但展示了自己成功,也分享了别人的成果。学生不仅学到了新知,在其他方面也得到了全面提升。
4、在生活中应用
学习数学目的是运用数学,也就是为了解决身边的数学问题。为此,在归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系的例子,培养学生综合运用知识的能力,从而体会到数学离不开生活,生活也离不开数学。
5、在练习中发展
为了及时巩固新知识,练习是必不可少的。在练习的设计上,我除了设计理解正比例意义题型之外,重点设计了对学生运用正比例意义去判断生活中两种相关联的量是否成正比例的题型。在练习设计上做到由浅入深,循序渐进,使不同的学生都有一定的发展。
6、在反思中进步。
反思整节课教学,基本体现了“以学生自主探究为主”的教学方式,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的实现了事先的教学设想。
不足之处:由于部分学生在以前分析数量关系这个内容的学**没有完全过关,我也没有及时扫清学生学**的这个障碍,所以他们虽然掌握了正比例的特征,但实际运用中,由于不能够正确分析数量关系,所以就不能够准确的判断成正比例的量。以后的教学中要先查漏补缺,以得到更好的教学效果。
教后记
1.重组课堂流程,延展探究空间。
第一次教学,我按照“复习铺垫—教学例1例2—总结概念—尝试练习”的直线型流程展开。整节课下来,讲解清晰而简练,学生的听讲认真而专注。在课堂练习中,大部分学生能做出正确判断,但总觉得这样的教学过于顺畅了,学生少了些深刻的思考和体验。带着这些疑惑,我又进行了第二次教学。第二次教学,我为学生设计了两大板块,第一板块是选择材料、主体解读的“初步体验”板块。在这一板块中,借助三则具体材料,让学生经历自主选择、**思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第二板块是交流思维,形成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并通过回馈具体材料的概念解释促进了理解的深入。这样的设计,流程板块少了,但探究空间却更为宽广了。
2. 呈现数学材料,丰富体验途径。
第一次教学,以时间与路程为变量的例1和以数量与总价为变量的例2,是支撑学生感悟正比例意义的两则数学材料。这两则材料从数量上分析偏少,呈现形式都是一模一样的静态出现,材料的使用方式也是雷同的,无法激发学生的参与热情。为了给学生的数学学习提供更为充足的材料,我改变了例1、例2和尝试练习的原有功能,把它们作为可供学生自主选择的三则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生可以凭借个体**解读、小组交流互评的渐进过程,充 分深入地自主探究,在亲历和体验中达成学习目标。而对于其他两则未选的数学材料,学生则可以借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。
3. 选择学习方式,促进深度感悟。
“引导发现”的启发式教学是第一次教学的主要方式,“教师问、学生答”是课堂行为的显性表现。在这样的数学学习中,学生的全部信息来自教师的讲解,很少有机会去体会教师给予的信息,很少有机会去交流现场生成的想法,也很少有机会呈现真实的学习状态。第二次教学,教师让学生采取选择材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选择的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。可以说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
《正比例》教学反思7
在本节课的教学过程中,首要的任务是让学生理解两种量之间的关系,通过观察比较,发现规律,认识和理解意义。然而我在课堂上被大多数学生的良好反应所影响,忽视了能力差的学生的发展。因而在练习判断圆的周长和半径、圆的面积和半径成不成比例或成什么比例时,一部分学生无从下手。究其原因是:
①本节课应立足于两个具体的数学现象归纳出的数学结论,显然本节课是仓促草率而缺乏普遍意义的。
从出示复习题、教学例题、逐题回答、到最后的引导归纳的方式,不利于激发学生的参与热情,这是影响本节课知识理解效度的重要因素。②本节课学生体会教师给予的信息的机会不多,很少有机会交流现场生成的想法,不能真实表露真实的学习状态。在这样的前提下,学生对数学知识的意义感悟就形成了“似懂非懂”随波逐流的表面形态。
③教师没有在教学中把学生可能出现的学习错误前置,导致学生的思维走了许多弯路。这就是本节课出现练习错误多的原因。
这也为以后的教学提出了严格的要求。教学设计必须以促进学生的有效学习与全面发展为出发点和终极归宿。让学生学会学习,学会思考,学会创造,这正是学习数学的主要目标。教师必须带着思考进行实践,结合实践升华理念,随学生一起成长。
《正比例》教学反思8
在教学成正比例的量之前,学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。在教学例1,自学例2时,我都鼓励学生去观察,去探索。尤其是例1,通过学生观察,找出规律,填写表格。通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性,在揭示成正比例的两种量的特点及性质时,让学生根据问题:
1、表中有哪两种相关联的量?
2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化的?
3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来**、归纳、得出其性质和意义。
在教学例2时,我安排了自学,让学生自主的去获取知识。每个学生都希望自己的想法能跟老师的接近或相同,这样他们会有成就感,从而增强他们学好数学的信心。
在整个教学过程中,我始终处在引导、辅助的地位。让学生成为课堂的主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属于他们的,这节课是属于他们的。让每个学生都有回答问题的机会,因此这节课的教学效果比较好。
《正比例》教学反思9
本节复习课,目的是经过整理复习,使学生对正比例和反比例的知识有个全面的认识,使所学知识结构化、系统化。在这节资料复习之前,我先在班里做了一个小**。了解到大部分学生能正确确定两个量是否成正比例或反比例,对正确描述正反比例有必须的困难。其中,一部分学生对正反比例意义的理解时思路不是很清晰,还有一些学生在用关系式描述正反比例时,存在较大的困难。
六年级学生已能自主地对知识进行整理、构成系统。所以在整理与回顾时我尽量放手,给学生充足的时间将本单元资料进行回顾整理,再深入各学习小组巡回指导,适当点拨。然后针对**中学生存在的问题设计练习,巩固应用。在这个过程中,我为学生供给自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系,并注重发展学生提出问题、解决问题的本事,在回顾、整理、巩固、应用的过程中帮忙学生再次经历重要概念和方法的构成过程,使学生不断积累活动经验,体会一些重要的数学思想。
下头以图上距离、实际距离、比例尺为例,谈谈如何联系具体的问题情境理解三者之间的关系。当比例尺必须时,图上距离和实际距离成正比例;能够结合图上距离和实际距离变化方向相同,那么在同一幅地图上,图上距离越长,表示的实际距离也就越大。当图上距离必须时,实际距离和比例尺成反比例,那么实际距离和比例尺的变化规律正好相反,能够出这样一道题帮忙理解,图上距离3厘米在下头哪一幅地图上表示的实际距离最大
①1:400
②1:600000
③1:600000
因为实际距离和比例尺成反比例,它们的变化方向相反,要使实际距离大,那么比例尺就要小,所以选第三个。当实际距离必须时,图上距离和比例尺成正比例,能够出这样一道题帮忙理解,一个半径100米的花坛,画在下头哪一幅地图上,图上距离最大
①1:40000
②1:60000
③1:100000
因为图上距离和比例尺成正比例,它们的变化规律一致,比例尺越大,图上距离就越大,所以应当选第一个比例尺。
《正比例》教学反思10
“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和“反”的理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
《正比例》教案5篇(扩展5)
——正比例的意义教学反思3篇
正比例的意义教学反思1
这节课,是在学习了比例的意义和性质的基础上进行教学的。反思这节课,着重使学生理解正比例的意义,也为下一步学习反比例的知识打下基础,在教学中,我做到了以下几点:
1、在观察中思考。
小学生学习数学是一个思考的过程,思考是学生学习数学认知过程的本质特点,是数学的本质特征。可以说,没有思考就没有真正的数学知识的来源。这节课的教学,我把思考贯穿教学的全过程。让学生自己设计一种情境,并引导学生进行观察,从而得出,两种相关联的量,初步渗透正比例的概念。这样的教学,让所有学生在观察中思考,在思考中探索,在探索中获得新知,**提高了学习的效率。
2、联系生活,从生活中引入。
数学来源于生活,有服务于生活。关注学生已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。这样,将学生带入轻松愉快的学习环境,创设了良好的教学情境,学生及时进入状态,手脑并用,课堂气氛十分活跃,将枯燥的数学知识形象、具体化,学生易于接受。
3、在合作中感悟,融汇到了生活中的数学。
新课标提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本节课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两种相关联的量后,敢于放手让学生采取小组合作的方式自学,在小组里进行合作探究,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。
4、在练习中巩固提升。
为了及时巩固新知识,完成了试探练习后,又加了一组巩固练习,这组练习,通过“看一看”、“说一说”、“议一议”3个题,让全体学生巩固了新知;接着又通过一个生活趣味题,让全体学生融汇到了生活中的数学;又设计了一个比较有难度的题,将课堂气氛上升到了一个新的**,让学习能力强的学生学有所进,整个练习将全班上中下各类学生都调动起了相应的积极性,使学生轻松愉快地掌握了正比例的意义,并且会判断两种相关联的量是否成正比例关系。顺利完成了本节课的学习任务。
我的这节课汇报完毕。不当之处,欢迎各位**、老师和同学们批评指正,并提出宝贵意见。非常感谢大家。
正比例的意义教学反思2
1导入环节
为了激起同学们的学习热情,提升同学们的学习积极性,我以黄山风景PPT配乐(高山流水)导入,通过第一天的课堂反应,同学们的学习积极性被调动起来了,课堂是很积极,但是问题来了:第一导入有一些太长,与教材内容想关联程度不大,耽误了课堂时间。
2新授
教材中例1直接引入相关联的量,成正比例的量,我觉得引入太多,自己根据黄山风景导入中的门票价格,编制例题一道,先来教授相关联的量。然后通过例1来认识正比例。这样的处理带来的问题:教材中安排例1和试一试,两道来认识正比例,第1题比值为速度80是整数,试一试中比值单价为0.3为小数,教材编写从整数到小数,由简到难,循序渐进,如果引入我的例题就打破了教材的编写循序渐进的原则,最后决定删除这部分内容。
3课件PPT的制作不太合适,内容太多,每页上的字数太多,每页上最多不能超过4行字,我在制作PPT时总是想把所有内容都呈现出来,总怕不全面,都想呈现给孩子看,不想错过什么,熟不知道孩子们根本不会看,而且呈现太多会导致重点不明确。第二次试课我忍痛删除了一部分。
4童谣中有反比例的部分,现在刚上出示有一些太早,应当反比例上完呈现。学生理解深度会加深。利于掌握新内容。
5课堂上教师不能频繁移动自己的位置,这样会影响学生思考。
上完这节课,我身上暴露的问题很多,还需要不断的去改进,反思,特别是最教材的整体把握。
正比例的意义教学反思3
星期五**一课《正比例的意义》,上完课听了老师们的点评,感受颇多,受益匪浅,对于备课时遇到的许多矛盾也豁然明朗了。
这是一堂概念课,全新的概念传授,在这之前学生没有任何这方面的基础,得出概念必定要引导学生逐步发现规律。原先的备课就直接出示例题,让学生通过填表,再通过一个个的小问题的'问答逐步发现。如果在一堂公开课上直接就这样上,是不是不太能充分体现课改理念。于是,就创设了这样一个情境:
师:本周一我校第三届读书节拉开了帷幕。“六(4)班有一位李明同学,今年13岁,身高1.5米。上星期天,他专门骑自行车以每小时15千米的速度到市图书馆去购买图书,行了3小时,买了4本单价为12元的《青铜葵花》,用掉60元,还剩40元。”
师:同学们,你能从中找出哪些数量? 围绕这几组数量关系师出示了四张统计表
表一:李明骑自行车的路程和时间如下表
表二:《青铜葵花》总价和单价统计如下表
表三:李明买书用去的钱数和剩下的钱数统计如下表
表四:李明的身高和年龄情况如下表
(让生逐一填写完整。其中表四的空格要求学生通过预测完成)
师问:从这四张表中,你发现了什么?能不能根据你的发现给这四张表分分类?
设计意图:将多种数量整体融合在一个学生熟悉的生活情境中,是为了让学生进一步感知数学问题来源于现实生活。将表格填写完整的过程是为了学生初步意识到每张表格中两个量之间的关系。给这几张表格分类是为了让学生区别开什么是“相关联的量”、什么是“比值一定”,在比较区别的过程中让学生逐步掌握判断两个量能否成正比例的两个必备条件。
陈老师点评:老师课前做了精心准备将所有的问题集中在一个生活情境中,这样的设计是不错,但有些细节应注意,如作为15岁的李明骑了3小时去买书,有点不符合实际,如果改成乘车去买书,同样达到设计意图,又符合实际;学生在预测李明40、60岁的年龄时不一定就一个答案,在一定的范围内左右应该也认同,不能全盘否定。
罗**点评:一开始就抛出这四张表让学生去比较,这样的安排顺序混乱。学生对于成正比例关系的两个量是怎样一种模式、具体概念还没有形成之前,后面两张表的出现会影响学生对新知掌握,应让学生在掌握好概念后,在强化训练的基础上再出现后两张表让学生去判断。如果我上的话,就直接出示书中的表格(例1、2),填完整的基础上比较它们的共同点,引出正比例的概念……
反思:怎样判断一堂课成功与否,关键看效果。按照我这样的设计,中上等学生应该是掌握的不错,那后进生呢?与**的上课设计两相比较,可能后者的设计使后进生更容易掌握,掌握的更扎实。不管是*时的随堂课还是**来听的公开课,“真实有效”才是我们的课堂追求,不能因为追求某种形式,而忽略学生的掌握过程。
《正比例》教案5篇(扩展6)
——正比例反比例教学反思
正比例反比例教学反思
作为一名到岗不久的人民教师,课堂教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那要怎么写好教学反思呢?下面是小编精心整理的正比例反比例教学反思,欢迎阅读,希望大家能够喜欢。
正比例反比例教学反思1
我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的。我在本课教学中,首先通过系列训练,将教材知识转换为学生喜闻乐见的形式,不仅使学生思路清晰地掌握知识体系,而且能在规律上点拨启发,所以学生主动性高,回答问题时能从不同角度、不同方位去思考,既开动了学生脑筋,又培养了学习兴趣。
其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习,让学生亲自经历知识的发生、发展过程,注重培养探究、创新意识,以达到教师主导与学生主体的有机结合,使零散的知识得到有效整合和扩展延伸,形成学生自己固有的知识体系.
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造****、轻松愉悦、积极上进,共同发展的新课堂吧!
正比例反比例教学反思2
这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容 学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的形成中逻辑性,严密性与连贯性的**。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。 教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由
A X B = C(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。
教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。
在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
另外我们还可以结合图像,我们也可以很清楚的将两者区分**!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造****、轻松愉悦、积极上进,共同发展的新课堂吧!
正比例反比例教学反思3
数学来源于生活, 又服务于生活, 联系生活实际创设问题情境, 是新课标精神的体现。教学中, 我从创设生活数学问题入手, 进入新课学习, 在学生掌握新知的基础上, 又回到问题情境的他讪, 同时还提供一个理具有综合性、开放性的题目: “你能举出一个正比例或反比例的例子吗? 为什么? ”在学生能准确由A X B = C 表示三量之间的比例关系后, 我又设计了这样一个环节: 请同学自己举一些生活中较熟悉的三量关系, 说说它们之间存怎样的关系, 再次回归生活, 让学生体验教学的价值, 这也是新课程教学理念――人人学有价值的数学。
教学中, 我尊重学生的的个性差异, 尊重学生的学习成果。如: 在学生知道了正、反比例的意义、关系式后, 我提出: “用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透, 又尊重了学生的个性发展和学习成果。
练习与提高部分, 我打破了老师出示题目――自己完成――集体订正的模式, 而是通过练习型课件, 让学生自己判断正确性, 既充分挖掘各省市毕业会考试题这一课题资源, 又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”, 更大限度的激发学生的参与热情, 让不同的学生有不同层次的收获与提高。
正比例反比例教学反思4
本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
从前几次学生的作业和考试情况来看,学生在用比例来解决问题的时候,有部分学生之所以没有完全掌握还是没有理解正、反比例的判断,所以我在复习正、反比例的应用的时候应注重数量关系的分析,并且在分析的过程中注重培养学生对生活经验加以深化和理解。通过本节课的复习,使学生再次掌握了正比例和反比例的概念,并使学生再一次的经历将一些实际问题抽象成代数问题的过程,进一步体会事物之间的联系和区别。在练习题的设计中我注重联系学生的生活实际,尽量选择离学生的生活接近的例子,培养学生在实际中学数学,用数学的兴趣
正比例反比例教学反思5
我们的数学之旅开到了第三单元《比例》,从上周五开始学习了正比例和反比例的意义,今天的数学课是将这两种关系进行对比,发现相同点和不同点。
预备铃后,我利用上课前的几分钟,让孩子们说说这两天学习正比例和反比例的意义的感受和困惑。这是几个孩子的发言:
蔺力林说:“老师,我觉得学习正比例和反比例一定要把话说完整,说清楚数量之间的联系。”
“对,用清楚的数学语言表示完整的数量之间的`关系确实是吴老师一直强调的,也是你们应当具备的能力。”我及时给予肯定。
高雨蕊***说:“老师,我有时候分不清楚是比值一定还是乘积一定,所以分不清楚是正比例和反比例。”
“你很会发现自己学习的问题,数量之间有很多关系,可以是加、减、乘、除等不同的运算得到的,我们找到其中的比值一定时,或者乘积一定时的关系,才符合正比例关系或者反比例关系。”我对孩子能发现自己的不足感到高兴。
赵恩昱说:“老师,一般的好判断,有些特殊情况我判断不准确。”
李雨蒙说:“老师,我那天说:‘直径一定,圆周长和圆周率成正比例。’大家说不对,为什么,我还是有点疑惑。”
这两个孩子的困惑是大多数孩子的困惑,很直观的数量关系时,比如:路程时间速度,单价总价数量,这些好理解好判断,可是遇到特殊情况时,学生就有困惑了。
针对孩子们的困惑,我们这节课做了专门的对比,首先正比例关系和反比例关系的成立必须是有两种相关联的量,一种量变化,另一种量也要随着变化。直径一定,圆周长也一定,圆周率也是一个固定的数,这里就没有两种变化的量,所以就不存在比例关系。再说特殊情况的判断,比如正方形的面积和边长,面积:边长=边长,边长也是变化的量,所以不成比例。
解决了孩子们的困惑后,我给孩子们说:“数学里有很多数量之间关系,这些数量不是简单1+1=2的固定不变,而是会发生变化,这是你将来学习数学重要的函数思想,都是从最简单的生活中的数量变化发现的规律。所以我们要会观察数量,用一双变化的眼睛看待数量之间的关系,你会思维越来越敏捷!”
正比例反比例教学反思6
上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:
(1)被除数一定,商和除数
(2)圆柱的体积一定,圆柱的底面积和高
(3)总价一定,单价和数量
(4)三角形面积一定,底边和高
(5)小麦每公顷产量一定,种小麦的公顷数和总产量
(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的量。具体的说,就是两个量是否具有相乘、相除的关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积*高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底*高/2,这个的变式主要是学生没有利用三角形的面积的推导,底*高=2*三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。
正比例反比例教学反思7
学习了正反比例的意义后,学生接受的效果并不理想,特别是离开具体数据根据数量关系判断成什么比例时问题比较大,一部分同学对于这两种比例关系的意义比较模糊。为了帮助学生理解辨析这两种比例关系,我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的异同后,总结出判断的三个步骤:第一步先找相关联的两个量和一定的量;第二步列出求一定量的数量关系式;第三步根据正反比例的关系式对照判断是比值一定还是乘积一定,从而确定成什么比例关系。学生根据这三个步骤做有关的判断练习时,思路清晰了,也找到了一定的规律和窍门,不再是一头雾水了,逐渐地错误减少了。看来在一些概念性的教学中必要的点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。
正比例反比例教学反思8
第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……
成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:
红花的朵数和鸡蛋的个数成正比例吗?为什么?
(3)和一定,一个加数和另一个加数成正比例吗?为什么?
像上面的两个例子,有时很难判断。
给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。
给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。
但是上面的两例在特殊情况下又都像是成正比例的。
给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?
给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?
此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的比值一定就行了。
第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。
下午第二节课的“实际测量”我大体是按照教材的思路**学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!
正比例反比例教学反思9
我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。
为什么加变化的量、画一画、探究与发现等内容?
由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。
其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。
其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。
小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。
初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。
高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。
到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。
这节课我谈谈个人的观点:
本单元是在学生已学习了比和比例的知识以及积累了一些常用数量关系基础上进行教学的,正反比例这个知识对于学生来说是一个全新的知识,也正好是规律探究的知识,因此高老师尝试用整体进入的方式来进行教学。主要让学生结合实际情境认识成正比例和反比例的量。通过学习这部分知识,使学生从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。教材的安排是用例1、例2教学正比例的意义和正比例的图像,例3教学反比例的意义,而高老师第一课时并没有进行图像教学。而是对教材大胆地进行重组,第一课时进行正、反比例意义的教学,第二课时进行正反比例图像的教学。从意义和图像两方面进行对比,用结构的方式,加深学生对正反比例意义的理解。这节课高老师主要引导学生通过观察分类自主探索、合作交流,呈现出学生“分类方法”的多样化,在两次“分类”中不断激发学生探究两种相关联量变化规律。学生学的比较愉快。
探讨的地方有:
1.在出现表格的时候最好加上一个不是相关联的量的表格让学生进行分类。如人的身高与体重等。这样对比更明显,让学生知道不相关联的两个量要归类在不能成比例一类,
2.可以让学生把一组组对应的数据写出来进行对比,教师也可以板书这样学生更能直观的发现他们的比值一样的.或乘积是一样的,以便发现规律.
3.重心下移的力度不够,规律可以让多个学生尝试归纳,然后教师可以指导学生看书得出规范性的数学语言.
4.教学中增加对比练习
5.增加拓展练习,抽象实际事例中的数量变化规律,加深正比例的概念的理解。
正比例反比例教学反思10
“正比例和反比例的意义”这部分内容 着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和 “反”的理解不够到位。
所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!
正比例反比例教学反思11
成正比例、反比例的量是北师大版六年级下册第二单元中的内容。通过学习,使学生理解正比例和反比例的意义,会正确判断成正比例的量和反比例的量,并初步了解表示成正比例量的图象特征和反比例量的图像特征,并能根据图像解决有关的简单问题。它是以后用比例解答应用题的关键。学习对正反比例的判断,才能够准确地对应用题中所出现的量进行判断,才能准确地列出比例或者方程解题。正反比例关系是比较重要的一种数量间的关系。如何准确地把握这一关系的判断方法那是非常重要的。
教学中我体会到:正比例、反比例知识是学生比较难学的内容。在判断两种变量是成正比例、成反比例时,学生总是迟疑不定、犹豫不决,常常出现判断错误。
在这部分内容中教材淡化了学生对数量关系的理解,而是让学生能够在具体的情境的中慢慢体会。正反比例的教学并不仅仅停留在数量关系上,只是让学生能够根据数量关系作一些简单的判断。这样让许多学生只是停留在机械的模仿和识记上。因此在复习题中我让学生复习了常见的数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。
教学过程中我又利用多**课件,出示表格让学生弄清什么叫“两种相关联”的量,引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的增加而增加或减少而减少,引导学生初步感知成正比例的两种量的变化方向性。
同时让学生从生活中列举了许多生活中正比例和反比例的实例。通过讨论“每袋大米的质量一定,大米的总质量和代数成什么比例?一支圆珠笔的单价一定,买的支数和总价成什么比例?李叔叔要去游长城。不同的交通工具所需时间如下:自行车每小时10千米,坐公交车每小时40千米,自己开小轿车去每小时80千米。总路程一定,速度和所需时间成什么比例?课堂上通过师生互动,生生互动,小组合作、生生合作、汇报学习成果或集中解决共性疑难问题,使学生在掌握课堂内容的基础上萌发出向更深层次思考的欲望。
在教学中同样也感觉到,由于这两个概念比较长,所以对于学生来说要真正完整的记忆下来是比较困难的,特别是对一些学习困难的学生。所以我也教给学生一定的方法,抓住句中的重点,通过理解来记忆。让学生通过相互之间说,前后同桌检查,达到对该概念的熟练叙述。张小琼
正比例反比例教学反思12
通过复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
从前几次学生的作业和考试情况来看,学生在用比例来解决问题的时候,有部分学生之所以没有完全掌握还是没有理解正、反比例的判断,所以我在复习正、反比例的应用的时候应注重数量关系的分析,并且在分析的过程中注重培养学生]对生活经验加以深化和理解。通过本节课的复习,使学生再次掌握了正比例和反比例的概念,并使学生再一次的经历将一些实际问题抽象成代数问题的过程,进一步体会事物之间的联系和区别。在练习题的设计中我注重联系学生的生活实际,尽量选择离学生的生活接近的例子。
正比例反比例教学反思13
学习正比例和反比例,这部分知识比较抽象,学生一般不容易掌握,所以我在教学成正比例的量时放慢速度,把握重点,主要让学生明白以下几个问题:
1、找准两个量是什么,弄明白这两个量存在什么样的数量关系;
2、让学生明白怎样才算是两个量相关联——即一个量变化,另一个量也随之变化,多举例子让学生弄懂。
3、点明如果相关联的两个量的商或比值不变(即一定),那么这两个量就是成正比例的量,它们的关系就是正比例关系。如果相关联的两个量的乘积不变(即一定),那么这两个量就是成反比例的量,它们的关系就是反比例关系。
4、讲解正反比例的图像。刚开始每一题都卡着以上步骤走,让学生渐渐地学会分析每一题的数量关系,这样学下来,孩子掌握的还比较好。
正比例反比例教学反思14
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学**与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
通过这节课的教学我深深的体会到要上一堂数学课难,上好一堂数学课更难,课前虽做了充分的准备,但还是存在不少问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。参与学生的探究不够。亲其师信其道,那么亲其生知其道不为过,真正融入学生才能体会学生的思想才能真正落实教学新理念。
当然,教学过程中还或多或少存在其它的问题,但有问题就有收获,在以后的教学中,认真反思,仔细分析,查找根源寻求对策,在教学的道路上不断攀登。
----------------------
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水*。
正比例反比例教学反思15
我执教的《正比例反比例》是北师大版六年级下册P63的内容,课前给学生下发“学案”让学生在充放预习的基础上以学案为载体,归纳、回顾和整理所学的知识,课堂以合作交流、展示为重点,本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
在学生对正比例和反比例的知识进行整理后,在小组内展开合作学习,让学生以小组为单位进行交流。小组长要做好**协调工作,在小组交流的过程中,哪个同学有什么疑问可以提出来,自己小组的同学进行解答。如果解决不了,就将疑问记录下来,等全班交流时,再进行**,在这个过程中,每个同学将自己整理的内容进行添加、补充、完善,小组整理的知识达成共识。经过这个过程,复习的重要知识基本上就形成了。
在小组活动时,教师及时走下讲台巡视,参与到解决问题有困难的小组中去,积极地看,认真地听,及时了解信息,以便在全班展示时及时抓重点、难点给予点拨、引导。
在小组交流的基础上,小组**进行发言。其他同学认真倾听,在汇报的基础上再进行补充。在学生汇报交流中,学生及时补充正、反比例的相同与不同。老师根据学生交流的情况,点拨判断正、反比例量的判断方法。
为了全面了解学生知识的掌握情况,在课堂结束阶段,设计适当的检测性练习题让学生**练习,及时反馈矫正,引导学生自觉参与课堂评价,进而对本节课的表现、练习情况等进行自我总结与反思,体验快乐与成功,增强学生学习数学的信心,培养良好的反思习惯。
在教学中也存在着以下几个问题:
1、时间安排不够合理。在“合作交流”部分的小组交流中时间留的较多,再加上学生在预展部分板书较慢,学生的板演技能还不是很高,以致课堂预设流程没有能够进行完。
2、学生的课堂语言有重复打结的现象,在学生的展示、补充、点评环节都有存在。对学生课堂发言、倾听习惯培养不到位,对学生课堂语言要进一步的引导养成良好的倾听习惯,以适应课改的需要。
《正比例》教案5篇(扩展7)
——《正比例》的教学反思 (菁选3篇)
《正比例》的教学反思1
星期五我**研究课《正比例》,本课是在学生学习了变化的量之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并能根据特点解决生活中的一些简单问题。根据教材的内容和特点,我试采用永威的“先教后学,当堂检测”的模式,实验后感觉孩子们不会自学,当自学指导出示后,都在那等结果,所以我认为应在课堂中逐步培养学生的自主学习能力。
一、复习旧知,引入课题
课前,我先**学生:“什么是相关联的量,谁能举个例子说一说?”学生很快说出“时间、路程、速度”之间的关系、“总价、数量、单价”的关系等等。由此我导入了新课:这节课我们要以一种新的观点来继续深入研究这些数量之间的关系。这样的导入就为下面的新授进行了有效的铺垫。
二、自主探究,学习新知。
出示例1表格,让学生观察并说说所获得的信息。首先,要让学生弄清什么叫“两种相关联”的量。我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?让学生试着写出几组行驶的路程和它所对应的时间的比的比值,发现它们比值是一样的,都是80。接着就追问:“这里的80表示什么?”学生很快回答出是“速度”,于是我就顺势揭示了“路程和它所对应的时间的比的比值一定时,路程就和时成正比例,路程和时间是成正比例的量。”这样就很好的解决了本课的难点。接着让学生做书上的“试一试”,用刚才所学的知识来判断总价和数量是否成正比例。学生很好的解决了这一问题。然后让学生对例1和“试一试”进行比较,发现都有这样共同的特点:“都有两个相关联的变量,两个量的比的比值都是一定的,这两个量都是成正比例”,引出了用字母来表示正比例Y:X=K(一定),Y和X成正比例。
三、巩固拓展,深化提高。
理清了新知识的知识脉络后,就要进行相应的练习,让学生来判断两种量是不是成正比例,要求学生**思考、认真分析,并要能说出判断的理由,这样既巩固了新知,又锻炼了学生的语言表达能力。
一节课下来,学生在自主探究中得出了规律,学习效果很好,并且能够体验到了学习的快乐。而我也深深的体会到在教学过程中就应该“该放手时就放手”。
《正比例》的教学反思2
这节《正比例》的教研课,已经讲完大约一个月的时间了,可是我的教学反思却迟迟没有交上来,不是没有反思的地方,而是反思的地方太多了,我都不知道该从如何下手去写了。这节《正比例》是北师版六年级下册的内容,是学生在学习了比的概念及求比值的基础上进一步学习比例,又是反比例和比例尺学习的基础。引导学生理解正比例的意义,学会分析两个量是否成正比例关系的方法是本课的重点。
考虑到学生学习的难度和班级的具体情况,我的这堂课采用以学定教的生本课堂教学模式。我没有用课件,没有在多功能大厅里讲,没有事先对孩子进行提示(以往在讲教研课的时候都有“**”的嫌疑),只是按照我校课改的方向,课前给孩子布置了学案,而且是两个学案,让学生**的选择其中的一个,让孩子通过自学,完成学案。至于课堂上会出现什么情况,我真的是毫无所知,不像以往,在哪个环节讲什么学生怎么答,我心里有数,可是这次不一样。我就是要把实际中的课堂模式展现给同事们和**。
课前我也做了大量的准备,认真的备教材备学生。把学案、习题写在了大白纸上,让同学们一目了然。在整个教研的过程中,虽然我完成了预期的教学目的,学生也能把学案上的问题归纳概括出来,但是课堂气氛不活跃,学生不主动举手,要点名才能***回答,也不能主动的提出疑问。小组讨论的时候也不热烈。流于形式了。更没有好的生成。还是没有脱离原来的教学模式。
课后呢,我在想课堂气氛不活跃,可能一小部分的原因吧,是由于六年级的孩子大了,发言的时候有了顾虑,怕说不好或不对,另一部分我想就是这个形式可能孩子们还没有适应过来,换一句准确的话,就是做为老师的我还没有引导孩子主动的去发言去探索。实施新课改,课前给学生布置学案,我大概到我讲这节教研课的时候有一个月的时间,还真的没有摸到门路,只是摸着****。老师都如此,何况孩子们。今后这就要看老师的驾驭、引导的能力了。
当然也不都是不足,课后我把学案拿过来看了看,学生都能把学案完成,而且归纳的也不错,只是不善于表达而已,这也是说明课改是正确的,它激发了学生的求知欲。而且我也告诉了大家,没有条件用多**教学时,在班级用这种最古老最常见的小黑板的方式出现问题,也不错呦。
总之了,我还在摸索中前进。还有很多值得反思的地方,但心里有却写不出来。
《正比例》的教学反思3
其实我们这部分的内容在五年级就已经学过了,只是没有告诉学生这样的两种量的变换规律就是成正比例。特别是我们在上学期学过了比的意义、比的化简与比的应用。联系比例的式子体会到生活中存在这很多像这样的变量关系。让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量。
课堂上我设计了情境:当单价一定时,总价与数量的变化关系。先让学生观察数量是怎样变化的,再看总价又是怎样变化的。引导学生观察并思考:当数量发生变化时,总价怎样变化;接着一个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买数量的变化而变化,在变化过程中应付的钱数与质量的比值相同。让学生总结出:1.两种变量是不是相关联的量;2.在变化的过程中,这两种量比值是否一定。
《正比例》教案5篇(扩展8)
——正比例教学设计
正比例教学设计
作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么写教学设计需要注意哪些问题呢?以下是小编为大家整理的正比例教学设计,仅供参考,欢迎大家阅读。
正比例教学设计1
教学资料:
人教版23页至24页例1以及相应的“做一做”。
教学目标:
1、掌握用正比例的方法解答相关应用题。
2、透过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解
3、培养学生分析问题、解决问题的潜力。
教学重点:
掌握用正比例的方法解答应用题
教学难点:
能正确决定两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、激趣导入
1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?
2、对于保亭县最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量电视塔的大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。
二、自学互动
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1)请一位同学读一读题目
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)小组合作学习交流,边汇报边板书
140÷2×5
=70×5
=350(千米)
答:________________。
3、适时点拨
这两种方法都合理,还能够有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2)________必定,_________和_________成_______比例联系。
(3)______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组**把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。
(2)明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析决定
2.找出列比例式所需的相等联系
3.设未知数列等式
4.求解
5.检验写答语
四、测评训练
1、基本练习
(1)例题改编
①如果把这道题的第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?
②让学生解答改编后的应用题,群众订正。
③小结:比较一下改编后的题和例1有什么联系和区别?
改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:
140/2=400/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
五、总结全课
同学们,你们这天学到了什么?有什么收获呢
正比例教学设计2
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅*面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
教学目标:
⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:
进一步认识成正比例和反比例的量。
教学难点:
感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、教师谈话,揭示课题。
⑴教师谈话。
教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。
⑵揭示课题。
揭示课题——正比例和反比例。
二、师生互动,合作交流。
⑴完成“练习与实践”第7题。
呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?
班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。
⑵完成“练习与实践”第8题。
呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?**写出数量关系式,同桌交流。
第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;
第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。
⑶完成“练习与实践”第9题。
呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。
班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。
⑷完成“练习与实践”第10题。
呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:
图上距离实际距离
学校-少年宫4厘米?米
学校-体育场3.5厘米?米
学校-市民广场2.5厘米?米
学校-火车站7厘米?米
多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……
解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。
⑸谈谈本节课的收获。
正比例教学设计3
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
**完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼*面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
正比例教学设计4
教学目标:
1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。
教学重点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
预习指导:
一、自学教材。
阅读教材第62~63页。
二、检查学习。
1.怎样两个量成正比例?
2.完成"试一试"。
教学准备:
课件和口算题。
教学过程:
一、导入
谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1 1.课件出示例1的表
⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?
⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。
2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。
3.我们可以写出这么几组路程和对应时间的比。
⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?
⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律
⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
课件出示:路程和时间成正比例。
⑷现在你能完整地说一说表中路程和时间成什么关系吗?
4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。
⑴课件出示"试一试"
⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?
课件出示表中的数据。
⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。
集体交流:
⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?
⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。
小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。
⑹你能完整地这样说给你的同桌听一听吗?
⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?
课件出示课题。
⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?
指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。
5.完成"练一练"
⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?
⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。
小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?
三、练习
1.完成练习十三第1题。
请大家继续看课本66页第1题
2.完成练习十三第2题
⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?
⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。
3.完成练习十三第3题(课件出示题目)
⑴课件出示放大后的三个正方形、
⑵大家看一看,你是这样画的吗?
⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。
校对学生做的情况。
⑷请大家根据表中的数据讨论下面两个问题。
①正方形的周长与边长成正比例吗?为什么?
②正方形的面积与边长成正比例吗?为什么?
四、总结。
通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。
板书设计:
正比例的意义
路程和时间是两种相关联的量,
时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,
我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
正比例教学设计5
教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。
教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。
教学目标
1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。
2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。
3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。
难点:运用比例的知识解决一些简单的实际问题。
课前准备课件。
教学流程设计意图
一、比的知识:
1.举例说说什么是比?什么是比的基本性质?
2.说一说用比的知识可以解决哪些实际问题。
3.完成教科书第83页“练习与实践”。
(1)完成第一题:学生**数出班上男女生人数,再完成此题。
(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
二、比和分数、除法的联系
出示:a∶b=()÷()=(b≠0)
1.先填空,再说说这样填的根据是什么?
2.说说比的基本性质与分数的基本性质、商不变的规律的联系。
3.练一练:
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()
(2)填空:
=()÷()=()∶()
(填好后展示学生不同的结果。)
三、比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例的基本性质是什么?
4.比例的基本性质有什么作用?怎样解比例?
5.练一练:完成教材第83页的“练习与实践”。
(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。
估计后再算一算,来验证估计。
(2)完成第3题:解比例,做好后选两题验算一下。
四、完成教材第84页“练习与实践”。
(1)完成第4题:先学生**做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。
(2)完成第5题:
第一小题让学生**得出:深色与浅色地砖铺地面积的
比是20∶40,化简得1∶2。
第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。
(3)完成第6题。
五、评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。
沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。
对比和比例进行比较,强化理解,进一步优化知识结构。
复习解比例。
应用比例分配知识解决实际问题。
正比例教学设计6
【教学目标】
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
【教学重难点】
重点:
成正比例的量的特征及其断方法。
难点:
理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
【教学过程】
一、四顾旧知,复习铺垫
商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生**完成后师**:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)
二、引导探索,学习新知
1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。
(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?
两种量中相对应的两个数的比值一定,这是关键。
4、认识正比例图象。(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?
无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?
小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、P46“做一做”
2、练习九第1、3~7题
正比例教学设计7
【课题】:
人教版小学数学六年级(下)《正比例的好处》
【教材简解】:
正比例的好处是小学数学六年级(下)第三单元的教学资料。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,透过对两个数量持续商必须的变化,理解正比例的好处,初步渗透函数的思想。
【目标预设】:
1、知识潜力:使学生认识正比例的好处,理解、掌握成正比例量的变化规律及其特征。
2、过程与方法:能根据正比例的好处决定两种相关联的量成不成正比例关系。
3、情感态度与价值观:进一步培养学生观察、分析、综合等潜力;培养学生的抽象概括潜力和分析决定潜力。
【重点、难点】:
重点:使学生理解正比例的好处。
难点:引导学生透过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值必须),从而概括出正比例关系的概念。
【设计理念】:
本节课的教学设计遵循以下几点设计理念:
1、抽象实际事例中的数量变化规律,构成正比例的概念。
例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是必须,能够说路程和时间成正比例,它们是成正比例的量,学生在那里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的好处,这一环节是概念构成的重要环节,也是发展数学思考的极好机会。
2、用图像直观表达正比例关系。
例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。
第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。
第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。
第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。
【设计思路】:
本课教学设计我从生活中一些常见的数量关系入手,复习一些数量之间的相互关系,打破了传统的正比例好处教学“复习 ——教学例1——教学例2——揭示概念——巩固练习”的教学模式,取而代之是让学生充分发挥学习的用心性,以及在学习过程中的合作探究潜力,进而总结出新知的尝试,本节课的教学依据“自学——反馈——探究——应用”这一课堂基本模式设计,结合新课程理念让学生在自主探究的氛围下学习,以求在理想的教学过程中产生理想的学习效果。
【教学过程】:
一、复习准备:
口答(课件演示)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学:
(一)自学
课件出示以下两组自学材料:
1、一辆汽车行驶的时间和路程如下
时间(比)
1
2
3
4
5
6
……
路程(千米)
50
100
150
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)路程是怎样随着时间变化而变化的?
(3)相对应的路程和时间的比分别是什么?比值是多少?
2、一种圆珠笔,枝数和总价如下表
数量(枝)
1
2
3
4
5
6
……
总价(元)
1.6
3.2
4.8
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)总价是怎样随着数量变化而变化的?
(3)相对应的总价和数量的比分别是什么?比值是多少?
【设计意图:以学生常见的数量关系入手,以表格并附思考问题的形式出现,激起学生的认知冲突,激发学生的学习兴趣和强烈的求知欲,让学生边填边思,为学生用心参与后面的学习活动打下基础。】
(二)反馈:
师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?
1、学生**说,小组内总结。(小组汇报,教师小结。)
小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。
【根据学生反馈板书】:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“必须”)
2、概括正比例的好处。
(1)师:刚才同学们透过填表、交流,明白了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是必须的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是必须的。这样我们就能够用数量关系式来表示:
【板书】:路程÷时间=速度(必须)总价÷数量=单价(必须)
问:谁来说说这两个数量关系式的意思?
(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)必须,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们这天要学习的资料。
【板书课题】:成正比例的量
追问:决定两种相关联的量成不成正比例的关键是什么?(比值是不是必须)
(3)字母表达关系式。
问:如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
【板书】:=k(必须)
(4)质疑。
师:根据正比例的好处以及表示正比例关系的式子想一想:构成正比例关系的两种量务必具备哪些条件?
【设计意图:透过学生自学两例“正比例”好处教学素材的反馈,让学生感悟其基本特征,从而由两个具体数学现象归纳抽象出数学结论,让学生经历这个过程,丰富他们的数学体验,实现“用教材教”而不是“教教材”这一新课程理念的转变。】
(三)探究:
1、课件出示表格
时间/时
1
2
3
4
5
6
……
路程/千米
80
160
240
320
400
480
……
根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。
问:你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
强调:每个点都就应表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎样看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
【设计意图:透过学生小组讨论、总结、汇报、师生交流后概括出的数学新知,再透过用图像直观表达正比例关系,进一步验证学习正比例关系的两个量用图像表示的状况,以帮忙学生构建立体的概念模型。师生的*等交流与探讨,激起情感共鸣,增强课堂的活力。】
(四)应用:
1、决定下面每题中两种量是不是成正比例,并说明理由。
(1)苹果的单价必须,购买苹果的数量和总价。
(2)长方形的长必须,它的宽的面积。
(3)每小时织布米数必须,织布总米数和时间。
(4)小新跳高的高度和他的身高。
学生**思考,指名回答,课件演示核对。
2、完成练习十三第2题。
先让学生**决定,再指名学生有条理地说明决定的理由。
3、完成练习十三第3题。
先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值必须时,它们才成正比例。
【设计意图:给学生练习的空间,加强学生对成正比例量的认识及正比例好处的理解,在对知识的实际应用中获得成功的体验,实现对新知的巩固。】
4、完成练习。
学生先**填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(**同桌讨论和交流)
三、课堂小结:
师:透过这节课的学习,你们都明白了什么?怎样决定两种量是否成正比例?
四、课堂延伸:
思考:正方形的边长和面积成正比例吗?
【设计意图:知识的拓展,能激活学生的思维,培养学生多角度思考问题的潜力,给学生更广的思维空间,充分发挥学生的潜能,使学生获得更好的发展。】
五、课外作业:
完成练习十三第1、4题。
六、板书设计:
正比例的好处
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
路程÷时间=速度(必须)总价÷数量=单价(必须)
=k(必须)
正比例教学设计8
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的`意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。
教学目标:
⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:进一步理解比和比例的一些知识。
教学难点:感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。
⑵自主练习。
教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。
学生自主练习,教师巡视。
二、交流讨论,梳理知识。
⑴整理比的知识。
交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。
⑵感受生活中的比例。
交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。
⑶整理比例的知识。
交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。
⑷整理解比例的知识。
交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。
⑸解决实际问题。
交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。
⑹谈谈本节课的收获。
正比例教学设计9
教学目标
1.使学生理解正比例的意义.
2.能根据正比例的意义判断两种量是不是成正比例.
3.培养学生的抽象概括能力和分析判断能力.
教学重点
使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习准备
口答(课件演示:成正比例的量)
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、新授教学
(一)导入新课
这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.
(二)教学例1.(课件演示:成正比例的量)
1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米
2.出示下表,并根据上述内容填表.
正比例教学设计10
教学内容
教科书第54页例3,练习十二5,6,7题。
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物**观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多**课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先**思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生**思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
正比例教学设计11
赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节
课的个人看法:
一、注重数学和生活的联系,课堂灵活开放。
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的***,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
二、如花微笑,温暖学生。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了**的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
三、用问题引领学生,突出学生的主体地位。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
正比例教学设计12
教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。
教学重点:
结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。
教学难点:
能跟据正比例的意义判断两种相关联的量是否成正比例的量。
教学准备:
教学过程:
一、导入
谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?
学生讨论,反馈。
[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]
二、教学例1
1、出示例1的表格。
**:表中列出了哪两种量?(板书:时间和路程)
观察表中的数据,哪一种量的变化引起了另一种量的变化?
指名回答。
谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)
为什么说路程和时间是两种相关联的量?
学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)
2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?
学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……
**:你能用一个式子来表示上面的规律吗?
根据学生回答,板书:=速度(一定)
3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)
[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]
三、教学“试一试”
1、出示“试一试”,学生**读题。
2、让学生根据已知条件把表格填写完整。
3、请学生根据表中数据,先尝试**完成表格下面的四个问题,再和同桌交流。
4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。
[设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]
四、归纳字母公式
1、比较例题和“试一试”的相同点。
**:观察上面的两个例子,它们有什么相同的地方呢?
(1)都有两种相关联的量;
(2)两种相关联的量相对应的两个数的比值总是一定的;
(3)两种量都成正比例。
2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?
根据学生的回答,板书:=(一定)
交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。
[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]
五、巩固练习
1、完成第63页“练一练”。
学生**思考并作出判断,要用完整的语言说出判断的理由。
2、完成练习十三第1题。
(1)让学生按题目要求先各自算一算、想一想。
(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。
3、完成练习十三第2题。
(1)让学生**判断,并指名说说判断的理由。
(2)注意引导学生有条理地说明判断的思考过程。
4、完成练习十三第3题。
(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?
(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。
(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。
[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]
六、全课总结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]
七、作业
完成《练习与测试》相关作业。
板书设计
正比例的意义
时间和路程路程和时间是两种相关联的量。
=80=80=80……
=速度(一定)
=(一定)
正比例教学设计13
教学内容:
成正比例的量
知识与技能:
使学生理解正比例的意义,会正确判断成正比例的量。
过程与方法:
使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学**惯。
教学重点:
正比例的意义。
教学难点:
正确判断两个量是否成正比例的关系。
教学过程:
一、揭示课题
1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1、教学例1
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200 ?......?252468
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
Y?K(一定) X
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
正比例教学设计14
教学内容:
九年义务教育六年制小学数学第十二册P62——63
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识正比例的意义
教学难点:掌握成正比例量的变化规律及其特征
设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的*台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充
二、初步感知探究规律1、出示例1的表格(略)
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)
(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,
(板书:路程和时间成正比例)
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书
3、抽象表达正比例的意义
引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书:=k(一定)
揭示板书课题。
先观察思考,再同桌说说
大组讨论、交流
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系
学生**填表
完整说说铅笔的总价和数量成什么关系
学生概括
三、巩固应用深化规律
1、练一练
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题
先算一算、想一想,再**讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题
先**判断,再有条理地说明判断的理由。
4、练习十三第3题
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
讨论、交流
**完成,集体评讲
说明判断的理由
说一说,画一画
填一填,议一议
讨论
四、总结回顾评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
正比例教学设计15
教学资料:
北师大版小学数学六年级下册《正比例》
教学目标:
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
认识正比例的好处和怎样决定两个变化的量是不是成正比例。
教学难点:
决定两个变化的量是不是成正比例。
教具准备:
课件
教学过程:
一、导入新课:
出示:路程、单价、正方形的边长……
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,**观察,发现规律,
2、**学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
2、教师揭示正比例的含义。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
*行四边形的面积/cm2
6
12
18
24
30
*行四边形的高/cm
1
2
3
4
5
买邮票的枚数/枚
1
2
3
4
5
所付的钱数/元
0.8
1.6
2.4
3.2
4.0
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
板书设计:
正比例
一个量随着另一个量的变化而变化
两个量的比值是不变
x=ky(k必须)
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、**思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体**解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
正比例教学设计16
教学目标:
1 使学生理解什么是相关联的量。
2 掌握正比例的意义及字母表达式。
3 学会判断两个量是否成正比例关系。
教学过程:
一、导入
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)
1表中有( )和( )两种量。
2 路程是怎样随着时间的变化而变化的?
3 任意写出三个相对应的路程和时间的比,并算出它们的比值。
4 比值实际上表示( ),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)
师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生**得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
正比例教学设计17
【教学内容】
正比例
【教学目标】
使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】
投影仪。
【复习导入】
1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?
板书: =速度。
②已知总价和数量,怎样求单价?
板书: =单价。
③已知工作总量和工作时间,怎样求工作效率?
板书: =工作效率。
2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
【新课讲授】
1. 教学例1。
教师用投影仪出示例1的图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?**学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
①铅笔的总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
**学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3.归纳概括正比例关系。
①**学生分小组讨论,上面两个例子有什么共同规律?
②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。
要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三:两个量的比值一定。
4.用字母表示正比例的关系。
教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)
5.教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
【课堂作业】
完成教材第46页的“做一做”(1)~(3)。
答案:
(1) 。
(2)比值表示每小时行驶多少km。
(3)成正比例。理由:路程随着时间的变化而变化。
①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
正比例教学设计18
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成( )比例。
(2)单价一定,总价与数量成( )比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】
二、揭示课题、探索新知。
1、小黑板出示例5
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1) 学生自己解答。
(2) 交流解答方法,并说说自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)
(也可以先求出用水量的倍数关系再求总价。)
10÷8×12.8
=1.25×12.8
=16(元)
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】
师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
(3)小黑板出示以下问题让学生思考和讨论:
1)题目中相关联的两种量是( )和( ) ,说说变化情况。
2)( )一定,( )和( )成( )比例关系。
3)用关系式表示是( )
(4)集体交流、反馈
板书: 水费 用水吨数
12.8元 8吨
?元 10吨
水费:用水吨数 = 每吨水的价钱(一定)
师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程):
学生**完成,教师巡视。
反馈学生解题情况。
8
12.8
10
χ
解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上个月的水费是16元。
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】
(6)将答案代入到比例式中进行检验。
你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?
生交流,汇报。
2、变式练习。
刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:
张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
(1)比较一下改编后的题和例5有什么联系和区别?
(2)学生**用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,学生说一说你是怎么想的?
3、概括总结
师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?
学生讨论交流,汇报。
师总结:
1、分析找出题目中相关联的两种量。
2、判断他们是否是正比例关系。
3、根据正比例的意义列出比例。
4、最后解比例。
5、检验作答。
【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】
三、巩固练习,形成技能。
1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗
师提醒:同一时间、同一地点的身高和影长成正比例。
学生读题后,先思考以下三个问题。
① 题中已知哪两种相关联的量?
②它们成什么比例关系?你是根据什么判断的?
② 你能列出等式吗?
生**完成,并汇报解答过程。
2、教科书P60“做一做”。
生**解答。
【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】
四、全课总结
通过今天的学习,你有什么收获?
五、布置作业
练习九第3、5题。
板书设计:
用比例解决问题
水费 用水吨数 解:设李奶奶家上个月的水费是χ元。
12.8元 8吨
?元 10吨 12.8 :8 =χ:10
8χ= 12.8×10
水费:用水吨数 = 每吨水的价钱(一定)
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元
正比例教学设计19
一、教学目标
(一)知识与技能
在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。
(二)过程与方法
通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
(三)情感态度和价值观
主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。
【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。
二、教学重难点
教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题
教学难点:利用正比例的关系列出含有未知数的等式。
三、教学准备
课件。
四、教学过程
(一)复习回顾
1.说说正比例、反比例的相同点和不同点。
2.判断下列每题中的两个量是不是成比例,成什么比例?
(1)已知A÷B=C。
当A一定时,B和C()比例;
当B一定时,A和C()比例;
当C一定时,A和B()比例。
(2)购买课本的单价一定时,总价和数量的关系。
(3)总路程一定时,速度和时间的关系。
【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。
(二)探究新知,培养能力
1.提出问题。
教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。
课件出示教材第61页例5。
思考:题中告诉了我们哪些信息?要解决什么问题?
教师:你能利用数学知识帮李奶奶算出上个月的水费吗?
2.解决问题。
(1)学生尝试解答。
(2)交流解答方法,并说说自己的想法。
教师:谁愿意来说一说你是怎么解决的?
预设1:
28÷8×10
=3.5×10
=35(元)
(先算出每吨水的价钱,再算出10吨水需要多少钱)
预设2:
10÷8×28
=1.25×28
=35(元)
(也可以先求出用水量的倍数关系,再求总价)
教师:谁和这位同学的方法一样?
【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。
3.激励引新。
教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
课件出示以下问题,让学生思考和讨论:
(1)题目中相关联的两种量是()和( ),说说变化情况。
(2)()一定,()和()成()比例关系。
(3)用关系式表示是()。
(4)集体交流、反馈。
板书:
教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程)。
学生**完成,教师巡视。
反馈学生解题情况。
解:设李奶奶家上个月的水费是x元。
28:8=x:10或()
8x=28×10
x=280÷8
x=35
答:李奶奶家上个月的水费是35元。
(6)将答案代入到比例式中进行检验。
教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?
(7)学生交流,汇报。
【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。
4.变式练习。
教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)
张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?
(1)比较一下此题和例5有什么联系和区别?
(2)学生**用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,请学生说一说是怎样想的。
5.概括总结。
教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。
学生讨论交流,汇报。
(1)分析找出题目中相关联的两种量。
(2)判断它们是否是正比例关系。
(3)根据正比例的意义列出比例。
(4)最后解比例。
(5)检验作答。
教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。
【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。
(三)巩固练习
1.只列式不计算。
(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。
(189:3=x:9)
(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。
(x:3=6:4)
2.用正比例解决问题。
(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?
(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?
【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。
(四)课堂小结,拓展延伸
同学们,谁来说说,**这节课,你收获了什么?
【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。
正比例教学设计20
一、教材分析
【复习内容】
教科书第12册94页“整理与反思”和94-95页“练习与实践”1-6题
【知识要点】
1.比和比例的意义与性质:
比比例
意义两个数的比表示两个数相除。(老教材:两个数相除又叫做这两个数的比.)表示两个比相等的式子叫做比例。
基本
性质比的前项和后项都乘或除以相同的数(0除外),比值不变。在比例里,两个外项的积等于两个内项的积。
2.比、分数与除法的关系:
a:b==a÷b(b≠0)
3.求比值和化简比的联系与区别:
意义方法结果
求比值比的前项除以比的后项所得的商叫做比值。前项除以后项一个数(整数、小数、分数)
化简比把两个数的比化成最简单的整数比前项和后项都乘或除以相同的数(0除外)一个比
4.图形的放大与缩小(新教材增加的内容)
5.解比例
6.按比例分配的实际问题
【教学目标】
1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。
2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。
3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
二、教学建议
复习比的知识抓住三点进行:一是举实例说说什么是比,既要有两个同类数量的比,也要有两个不同类数量的比,使学生对比的含义有比较全面的理解。二是通过改写a∶b,沟通比与分数、除法的关系,从除数不能是0体会分母、比的后项也不能是0。三是找出比的基本性质、分数的基本性质和商不变的规律之间的内在联系,完善认知结构。
练习与实践中,要利用第3题里的比组成比例,回忆比例的意义和性质,理解把照片①变成照片④是把图形按一定的比缩小,把照片④变成照片①是按一定的比把图形放大。
三、知识链结
1.认识比(教科书六上P68、69例1例2)
2.比的基本性质(教科书六上P70、例3)
3.化简比(教科书六上P71例4)
4.按比例分配(教科书六上P75例5)
5.图形的放大与缩小(教科书六下P38、39例1例2)
6.比例的意义和性质(教科书六下P40例3、P43例4)
7.解比例(六下P45例5)
四、教学过程
(一)比的知识:
1.举例说说什么是比?什么是比的基本性质?
2.说一说用比的知识可以解决哪些实际问题。
3.完成教科书p94“练习与实践”
(1)完成第一题:学生**数出班上男女生人数,再完成此题。
(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
(二)比和分数、除法的联系
出示:a∶b=( )( )=( )÷( )(b≠0)
1.先填空,再说说这样填的根据是什么?
2.说说比的基本性质与分数的基本性质、商不变的规律的联系。
3.练一练:
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。( )
(2)填空:( )( )=( )÷( )=( )∶( )(填好后展示学生不同的结果。)
(三)比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例的基本性质是什么?
4.比例的基本性质有什么作用?怎样解比例?
5.练一练:完成教科书p94“练习与实践”
(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。
估计后再算一算,来验证估计。
(2)完成第4题:解比例,做好后选两题验算一下。
(四)完成教科书p95“练习与实践”
(1)完成第5题:先学生**做最后交流第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。
(2)完成第6题:第一小题让学生**得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。
第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。
(五)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
习题精编
一、对号入座。
1.( )÷10=0.6=( )%=( ):( )=
2.把:化成最简单的比是( );千克:400克的比值是( )。
3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。
4.一杯400克的盐水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。
5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )
6.如果A×=B×,那么A:B=( ):( ),当A=0.8时,B=( )
正比例教学设计21
教学内容:
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水*。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:
认识正、反比例的意义
教学难点:
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:
正比例和反比例(4课时)
第1课时
教学内容
成正比例的量
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题
课型
新授
本单元教时数:4本教时为第1教时备课日期月日
教学目标
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备
光盘课件
教学过程设计
教学内容
教师活动
学生活动
二次备课
一、教学例1
1、谈话引出例1的表格
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变
4、介绍成正比例的量
指名说说,表中有哪两种量
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量
二、教学试一试
1、出示教材试一试
教师指导学生完成
学试着完成,并交流回答四个问题。
三、概括意义
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习
1、完成练一练
2、练习十三第1题
重点让学生说出判断的理由
3、做练习十三第2题
4、做练习十三第3题
引导学生根据计算的结果来判断。完成书上的问题
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
**判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结
学习了什么?你有什么收获?
说一说
板书
正比例的意义
两种相关联的量=k(一定)y和x就成正比例的量
课后感受
第2课时
教学内容
正比例的意义及其图像
教材第63页例2,随后的练一练和练习十三的第4、5题
课型
新授
本单元教时数:4本教时为第2教时备课日期月日
教学目标
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备
光盘课件
教学过程设计
教学内容
教师活动
学生活动
二次备课
一、教学例2
1、先出示例1的表格
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?
引导学生观察这些点的排布规律,并用直线连起来。
**:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)
(2)图中所描的点在一条直线上吗?
(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?
学生描点。
学生按要求操作完成。
指名回答
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的*行线,从而得到与已知图象的交点;再从交点起作横轴的*行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习
1、练一练
学生做好后展示学生画的图象,共同评议
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题
追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?
2、练习十三第4题
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的
3、第5题
先让学生**完成,在**交流,帮助学生进一步明确方法,加深认识。
学生**完成
指名回答第(2)个问题
学生相互间说一说
学生回答,要说明理由
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结
今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?
说说,议论议论。
板书
正比例的意义及其图像
例2(图像)
课后感受
正比例教学设计22
导学目标
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
导学重点:成正比例的量的特征及其判断方法。
导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
预习学案
填空
1、如果路程时间=()(一定),那么()和()成正比例。
2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。
3、如果yx=k(一定),那么()和()成正比例。
导学案
学习例1
在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。
高度24681012
体积50100150200250300
底面积
体积和高度有什么变化?观察他们的比值,你发现了什么?
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:
yx=k(一定)
想一想,生活中还有哪些成正比例的量?
小组讨论交流。
看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
课堂检测
下列各题中的两种相关联的量是否成正比例关系,并说明理由。
1、正方体的棱长和体积
2、汽车每千米的耗油量一定,耗油总量和所行千米数。
3、圆的周长和直径。
4、生产800个零件,已生产个数和剩余个数。
5、全班的人数一定,一、二组的人数和与其他组的人数和。
6、和一定,加数与另一个加数。
7、小苗牌2B铅笔的总价和购买枝数。
8、出油率一定,所榨出的油的重量和大豆的重量。
课后拓展
从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?
板书设计
成正比例的量
高度/cm24681012
体积/cm350100150200250300
底面积/cm2
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例表达式:yx=y(一定)
正比例教学设计23
教学内容:
教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点:
理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例
学情分析
1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。
2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。
多**运用:ppt课件
教学过程:
一、教学例1
1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再**全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?
根据学生的回答,教师板书关系式:路程时间=速度(一定)
5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)
二、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义
1、引导学生观察上面的两个例子,说说它们有什么共同点。
2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式。
四、巩固练习
1、完成第63页的“练一练”。
先让学生**思考并作出判断,再要求说明判断理由。
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再**讨论和交流。
第2题先让学生**进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,**学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
五、全课小结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
正比例教学设计24
【教学内容】
《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。
【教学目标】
1、使学生理解正比例的意义,会正确判断成正比例的量。
2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
【教学重点】
正比例的意义。
【教学难点】
正确判断两个量是否成正比例的关系。
【教学准备】
多**课件
【自学内容】
见预习作业
【教学预设】
一、自学反馈
1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量
2、通过自学,你能说说什么叫做成正比例的量?
3、你是怎样理解成正比例的量的含义的?
4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的引导下,学生会举出一些简单的例子。
二、关键点拨
1、正比例的意义
(1)出示表格。
高度/㎝24681012
体积/㎝350100150200250300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25*方厘米。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
2、判断正比例关系:下面哪些是成正比例的两个量?
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
三、巩固练习
1、学生**完成例2后反馈交流。
(1)从图中你发现了什么?
这些点都在同一条直线上。
(2)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
②体积是225㎝3的水,杯里水面高度是多少?
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
(3)你还能提出什么问题?有什么体会?
2、做一做。
过程要求:
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
(2)表中的路程和时间成正比例吗?为什么?
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?
(5)你还能提出什么问题?
3、**完成第44页练习七第1、2题。
4、判断并说明理由。
(1)圆的周长和直径成正比例。
(2)圆的周长和半径成正比例。
(3)圆的面积和半径成正比例。
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
正比例教学设计25
一、教学目标
(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。
(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;
(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、教学的重点和难点
教学重点:正比例函数的性质及其应用。
教学难点:发现正比例函数的性质
三、教学方法与学法指导教学方法:
引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:引导学生学会观察、归纳的学习方法。
四、教具准备
电脑PPT,洋葱学院电脑版
五、教学过程:
(一)温故知新,引入课题
温故:正比例函数的图像是什么?
答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线
(二):知新:
在两个直角坐标系内,分别画出下列每组函数的图象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x
引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?
观察图像,思考问题:
1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?
2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。
3.你从中得出什么规律?
第一个问题:图像经过的象限与k的取值有何联系?
估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。
师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致
估计生:第一组k>0,而第二组k<0。
师:很好,谁能把他们联系一下?
估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录xx这个网址,进行演示,让学生更加直观的观察到k的**对函数图象的影响)
下面由老师来证明这个性质:(由观察猜想到逻辑证明)
板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
证明:当k>0时,若x>0,则kx>0,即y>0∴点(x,y)在第一象限
若x<0,则kx<0,即y<0∴点(x,y)在第三象限
当x=0时,则kx=0,即y=0∴点(x,y)即原点。
即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k<0时,亦可证明函数图像经过二、四象限。
我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。
PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:现在我们做个小练习,由正比例函数解析式(根据k的**),来判断其函数图像的走向。
y=-xy=xy=xy=-xy=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)
鼓励学生踊跃抢答。
反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。
板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)
师:小练习:由函数解析式,请你说出它的变化情况:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)
鼓励学生踊跃抢答。
第三个问题:你从中得出什么规律?
归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:
当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)
当k<0时,函数图像经过第二、四象限;自变量x逐渐增大时,函数值y反而减小。(也就是“捺”的走向)
归纳为一句话,正比例函数图象的性质归根结底看k的符号。
即:k>0提(一、三,增大);
k<0捺(二、四,减小)
(三)应用
1、正比例函数的解析式是___________,它的图像一定经过___________。
2、y=-的图像经过第___________象限。
3、已知ab<0,则函数y=x的图象经过___________象限。
4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。
5、当m为何值时,y=mxm2-3是正比例函数,且y随x的增大而增大。
思考题:
①已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。
②分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小结这节课让我们知道了……
以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。
(五)作业89页练习题
(六)课后反思
1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了**。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。
2.不足之处:
(1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。
(2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。
(3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。
3、改进措施:
(1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。
(2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。
(3)在性质的发现总结过程中,应让学生自己**完成,教师不必着急帮助总结,这样可以更加集中学生的***,激发学习兴趣。
在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。
正比例教学设计26
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多**课件;学生在布店里自己选取一种布,**买1米布要多少钱,买2米布要多少钱…,将**结果记录好。
教学过程:
一、复习准备
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27
路程(千米)180630
二、导入新课
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课
用多**课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)
路程(千米)
教师:先**思考后再讨论、交流、回答以下问题
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)
数量(米)1234567…
总价(元)8.21*24.632.841.049.257.4…
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习
指导学生完成练习十六第1~3题。
五、课堂小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
正比例教学设计27
老师执教的《正比例的意义》这课,对我感受很深。
一.结合生活实际
周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。
二.突出学生的主体地位
周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。
三.练习设计具有阶梯性
周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。
建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。
正比例教学设计28
教学内容:
九年义务教育六年制小学数学第十二册P63——64
教学目标:
1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:
能认识正比例关系的图像。
教学难点:
利用正比例关系的图像解决实际问题。
设计理念:
数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题
教学步骤教师活动学生活动
一、复习激趣1、判断下面两种量能否成正比例,并说明理由。
◎数量一定,总价和单价
◎和一定,一个加数和另一个加数
◎比值一定,比的前项和后项
2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?
学生口答
想象猜测
二、探究新知1、出示例1的表格(略)
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像
3、展示、纠错
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
学生到黑板上示范
互相评价纠错
学生讨论
说说是怎样想的
三、巩固延伸
1、完成练一练
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题
先看一看、想一想,再**讨论和交流。
要求学生说出估计的思考过程。
3、练习十三第5题
先**填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
**讨论和交流
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
**完成,集体评讲
想一想,说一说
画一画,议一议
学生设计,交换检查并相互评价
四、评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
正比例教学设计29
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析
1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
二、学况分析
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
三、教法
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法
引导学生在观察比较的基础上,**思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程
本节课我安排了六个教学环节
第一个环节:游戏导入,激发兴趣
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验
用多**呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高
第六环节:全课小结
六、效果预测
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
正比例教学设计30
教学要求:
1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学过程:
一、复习铺垫
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、引入新课
我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。
二、教学新课
1、教学例1。
出示例1。让学生计算,在课本上填表。
让学生观察表里两种量变化的数据,思考。
(1)表里有哪两种数量,这两种数量是怎样变化的?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论。
**:这里比值50是什么数量?(谁能说出它的数量关系式?)
想一想,这个式子表示的是什么意思?
2、教学例2
出示例2和想一想
要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。
学生观察思考后,指名回答。然后再**,这两种数量的变化规律是什么?你是怎样发现的?
比值1.6是什么数量,你能用数量关系式表示出来吗?
谁来说说这个式子表示的意思?
3、概括正比例的意义。
像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。
4、具体认识
(1)**:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?
例2里的两种量是不是成正比例的量?为什么?
(2)做练习八第1题。
5、教学例3
出示例3,让学生思考/
**:怎样判断是不是成正比例?
请同学们看一看例3,书上怎样判断的,我们说得对不对。
强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
1、做练一练第1题。
指名学生口答,说明理由。
2、做练一练第2题。
指名口答,并要求说明理由。
3、做练习八第2题(小黑板)
让学生把成正比例关系的先勾出来。
指名口答,选择几题让学生说一说怎样想的?
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业。
正比例教学设计31
1.联系生活,从生活中引入,激发了学生学习兴趣。
数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。
2.有效地处理教材,让学生亲身经历数学模型的形成过程。
《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的**的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。
3、服务于生活,回到生活中去,解决生活中的实际问题。
在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。
正比例教学设计32
教学目标
使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。2。培养学生概括能力和分析判断能力。3。培养学生用发展变化的观点来分析问题的能力。
教学重难点
重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
教学过程
一、四顾旧知,
复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生**完成后
师**:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)
二、引导探索,学习新知
1、教学
例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?
学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:===…=3。5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?
预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的两个数的比值一定,这是关键。
4、认识正比例图象。
(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?
生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。
设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、P46“做一做”
2、练习九第1、3~7题
正比例教学设计33
教材分析:
正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。
学情分析:
学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。
教学目标:
1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的好处。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学难点:
能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一、在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三
1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的好处
1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
2、购买苹果应付的钱数与质量有什么关系?
3、正方形的周长与边长有什么关系?
4、观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5、小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1、想一想
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化状况如下
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再群众汇报
三、全课总结:
说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(必须)
总价÷数量=单价(必须)
正方形的周长÷边长=4(必须)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。
《正比例》教案5篇(扩展9)
——正比例图像教学后记
正比例图像教学后记1
学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础,正比例关系是数学中比较重要的一种数量关系,它也为学习反比例进行铺垫,同时,学生理解正比例的意义往往比较困难。为此,我密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,引导学生认识成正比例的量以及正比例在生活中的广泛存在。
我首先给学生提高了正方形的周长与边长和面积与边长的变化关系。让学生**填表、观察,然后与同伴交流,通过表格、图象、表达式的比较,体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,学生将初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。同时,借助图形直观、动态地体现了正方形的周长与边长“成正比”的过程,为学生后面学习正比例的图象积累经验。()接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化第三个情境则是,购买同一种苹果时,应付的钱数与购买的苹果质量之间的关系。
通过以上这两个实例,引导学生认识到:路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”。最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:1. 两种想关联的变量;2. 在变化的过程中,这两种量比值一定。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除