考研数学之行列式的计算方法
考研数学之行列式的计算方法
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。以下是小编为大家收集的考研数学之行列式的计算方法,欢迎大家借鉴与参考,希望对大家有所帮助。
行列式是线性代数中最基本的运算之一,也是考生复习线性代数必须掌握的两大基本技能之一(另一项是线性方程组)。后面的很多知识点都会用到行列式,如判断矩阵的可逆性,求矩阵的秩,求矩阵的特征值等。在考试中,这一部分如果单独出题的话往往以选择题或填空题的形式出现,且以考查抽象矩阵的行列式为主;更多的时候,行列式是与其他知识点(如线性方程组、特征值与特征向量等)结合起来考查的,我们往往把行列式视为解决问题的工具。
考生在复习行列式时,主要从如下三方面来把握:
首先理解行列式的定义,掌握行列式的基本性质和行列式按行按列展开的定理,并会利用他们计算各种形式的行列式。
其次是行列式与矩阵的各种运算的关系,如行列式与矩阵的乘积,数乘和矩阵的分块等运算的`关系。
最后,也是最重要的,是行列式与线性代数中其他概念的关系:如齐次线性方程组有无非零解的充要条件;N个N维列向量线性无关的充要条件;实对称矩阵正定的充要条件。
行列式常见题型与方法总结如下:
题型一:对逆序及行列式定义的考查,正确理解概念,题型一便可迎刃而解。
题型二:抽象行列式的计算,解题思路为
(1)用行列式的性质做恒等变形;
(2)利用行列式与矩阵乘法的关系简化计算;
(3)利用特征值与行列式的关系。
题型三:数字型行列式的计算,解题方法为
(1)公式法,低阶行列式,二阶三阶常可直接代公式;三阶或以上按照行列式展开定理进行降阶后再计算。
(2)三角化法,用行列式的性质做恒等变形,将行列式化为上三角或下三角行列式。
(3)递推法,利用行列式按行或按列展开的定理对行列式降阶,得到递推式,再通过递推式求通式。
以上是对线性代数行列式这一考点的解析,有助于考生在复习线性代数行列式这部分内容时,有一个宏观了解,平时还要多加练习,天道酬勤!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除