关于数学的历史小故事

关于数学的历史小故事

  数学古称算学,是古代科学中一门重要的学科。那么有哪些历史故事是关于数学的?下面就是百分网小编给大家整理的数学历史故事,希望大家喜欢。

  数学历史故事篇(一)

  西方最早发展数学的是巴比伦人与埃及人,他们的数学都是因实际需要而产生的,而且都很初等。直到希腊时代才有极大的转变,他们认为大自然的周而复始,其实是依循一定的模式井然有序的,若能了解其变化的原因,便能预测未来的变化,而这中间该掌握的工具便是数学。于是无论在天文、光学或是音乐的研究,都带有浓厚的数学味道。

  而现在,学生们在中小学阶段,除非跳级,否则至少要念十二年的数学。老师及家长都普遍地认为数学很重要,事实上也是如此,学生则因为被熏陶得太久了,心中对数学重要性的认识毋庸置疑,他们知道,数学与生活是分不开的,与人类进步更是息息相关的。学好了数学这门工具,对解释星球的运转、物体的运动及许多物理现象都是轻而易举的事情,并能带动科技的发展,促进人类文明的进步。

  比如,数学上认为黄金长方形是一极美观的图形,不但在数学、艺术、建筑、自然界,甚至广告中,都能随时随地见到黄金长方形。心理学家曾做过实验,证实黄金长方形是让人看起来最顺眼且最舒服的一种图形。正因为如此,古希腊人便留意到建筑物的长与宽之比为黄金数,则是最协调的,如希腊雅典女神之神殿等。除了在建筑上的影响,在艺术作品里,也常有黄金长方形出现。达文西发现人体的高度与由脚底到肚脐的高度之比大约是黄金数,艺术家则认为,若人的肚脐为人体头至脚的黄金分割点,则这种体形是最优美的。而在达文西的一幅未完成的作品中,也完全吻合黄金长方形。

  数学的妙用还在于它为莎士比亚的新诗鉴定真伪。上个世纪80年代,有一研究莎士比亚的美国学者,在英国牛津大学图书馆,找到一首很可能是莎士比亚的抒情诗。如果能证明这首诗是莎士比亚的作品,将是17世纪以来,莎士比亚作品最重要的一次发现。所以,许多专家学者利用数学中的数值分析、以及诗中出现的相异字和期望值之估计值对这首诗进行研究,有趣的是,统计学者也介入了这场纷争。这并非统计学家第一次协助解决文学上的问题,而是由于统计分析是如此地具有说服力,因此往往能使一些文学上长期的争论,迅速地平息。

  数学历史故事篇(二)

  公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟-子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与 其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发 现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。

  不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

  然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.

  数学历史故事篇(三)

  华罗庚出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的'毅力和崇高的追求,终于成为一代数学宗师.

  少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.

  3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子

  聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.

  这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子.看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除