考研数学极限的运算方法及适用情况 (菁选2篇)

考研数学极限的运算方法及适用情况1

  基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所**的任意小以及**的距离。

  除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。

  极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。

  第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;

  第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);

  第三种是洛必达法则,适用于及 型未定式,在使用的过程中需要注意一下几点:

  1、洛必达法则必须结合等价无穷小使用;

  2、使用一次整理一次;

  3、其他类型未定式需要转化成 及 型才可以使用洛必达法则等;

  第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;

  第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于 个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;

  第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;

  第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。

  以上,从大的框架结构上给出了极限一章极限定义和极限计算的常用方法,希望同学们对这一章有一个宏观的把握,但是具体的细节掌握还要待进一步细致的学习。在复习的过程中要多留心多总结把重要的方法记录下来,错题记录下来方便后续的.自我检查。

考研数学极限的运算方法及适用情况2

  1.思考着去做题,去总结

  很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,提醒大家要学着思考,学着"记忆",最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!

  2.侧重基础,培养逆向思维

  很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。其实在前期复习知识点的时候,就应该把定义、定理的推导作为一个重点内容,重视推导和例题中的方法与技巧,认真分析这些方法,将它们套用到相应的练习题中,比做大量的重复练习要高效得多。

  同时,思维习惯**影响着学习效果。当进入考研数学复习备考的时候,大多数人继承了以往学习的习惯,思维也基本上定型了,也就是进入了定势思维。习惯性思考方式在一方面有优势,另一方面也制约着学习成绩的提高,我们现在要做的就是打破惯性思维!

  3.做题有始有终,提高计算能力

  数学不等于做题,但是不可避免的是学好数学一定要做题,那么如何做题?我们说基础的扎实巩固是根本,再这个基础上进行做题。同时,提醒大家的是复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练,尤其是计算量大的时候,如果没有*常这样一个训练,在实际考试的时候在短时间内是很难心有余力也足的。

  4.深入思考,善于总结

  考试里不仅仅是考察我们基本概念、基本理论、基本方法的问题,还涉及到我们灵活运用知识的能力问题,所以仅仅是依靠教材很难把它这种考试命题的特点归纳总结出来,因此要了解考试,历年考试的真题作为准备去参加研究生考试的同学是必备的。

  大家选真题的时候应该考虑到能不能通过真题的分析帮助我们真正的归纳总结这样一些题型出来,针对每一个问题我们应该如何去分析和讨论在分析讨论过程中间,有没有一些可能的变化情况,这些变化情况到现在为止,考到了哪一些,那一些就是我们下一步复习应该注意的,这样每一部分你都能够这样去归纳、总结或通过这种相关的辅导书帮助你归纳总结出来了,复习就更有针对性。

  5.揣摩真题,把握方向

  真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更要注意。所以,同学们一定要把真题重视起来!


考研数学极限的运算方法及适用情况 (菁选2篇)扩展阅读


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展1)

——考研数学备考题型及分值情况 (菁选2篇)

考研数学备考题型及分值情况1

  若是数一:试卷满分为150分,考试时间为180分钟. 。高等数学 56%   线性代数 22%   概率论与数理统计 22% 。试卷题型结构为:单选题 8小题,每题4分,共32分 ,填空题 6小题,每题4分,共24分,解答题(包括证明题) 9小题,共94分

  若是数二:高等数学 78% ,线性代数 22% 。试卷题型结构为:单项选择题选题 8小题,每题4分,共32分,填空题 6小题,每题4分,共24分,解答题(包括证明题) 9小题,共94分

  若是数三:微积分 56% ,线性代数 22% ,概率论与数理统计 22% ,试卷题型结构为:单项选择题选题8小题,每题4分,共32分,填空题 6小题,每题4分,共24分,解答题(包括证明题) 9小题,共94分

考研数学备考题型及分值情况2

  高等数学分为5大知识模块:

  1、一元微积分学 ;2、多元微积分学;3、曲线、曲面积分;4、无穷级数;5、微分方程。这里面的曲线、曲面积分是数一的同学特有的,其他内容是所有考数学的同学都要考查的。

  线性代数分为3大知识模块:

  1、行列式和矩阵;2、向量和线性方程组;3、特征值、特征向量和二次型。线性代数部分从考纲来看各个卷种的差别不大,近些年的变化也不大,是考研数学相对稳定的一部分考查内容。

  概率论与数理统计分为3大知识模块:

  1、概率、概率基本性质及简单的概型,2、随机变量及其分布与数字特征,3、统计基本概念、参数估计及假设检验,这部分是数二的同学不要求的,而数一和数三大纲的要求还是有些差距的,比如数一要求假设检验而数三不要求。

  建议大家可以按下面提供的方法进行四个不同层次的归纳总结:

  第一个层次是概念、性质、公式、定理及相关知识之间的联系、区别的归纳与总结。我们的方法是:首先按照自己认为的重要到次重要的顺序进行回忆,之后比照考试大纲所规定的考试内容,看自己有哪些遗漏了,从而形成完整的知识网络。我们还要对遗漏的知识点进行分析,要搞清楚这个知识点是由于和这个小的知识模块关系不紧密而没有联系起来,还是自己在复习过程中忽略了。

  对于前一种情况大家不用放在心上,只要看一看这个知识点说的是什么意思就可以了,比如:在我们回忆一元微积分学时,如果没想起来曲率的概念,这关系不是很大,要知道和整个知识模块相对游离的知识点往往不是考研的重点,我们知道即可。可是对于那些本来很重要的知识点由于自己的忽视而没有想起来,这时我们要高度的重视起来了,这些知识应该是自己的相对弱点和盲点,对这些知识点的复习是我们是否能考出好成绩的关键!对这些知识点我们要想尽一切办法去理解,去练习,直到掌握了为止!在这一层次中大家要知道,考研中的重要的考点往往是不同部分的节点,这样的知识点可能联系着两个或多个的概念,是起桥梁作用的知识。

  第二个层次是对题型的归纳总结。做完第一个层次的总结,我们只是把考研要考的一些小的知识点形成了一个知识的网络图,但我们还不知道考研是从什么角度,如何考查大家,这时我们要进行第二个层次的总结。我们归纳总结的方法是先根据自己看过的和做过的辅导材料凭记忆总结出若干的题型,之后比照自己所看的材料看自己总结的是否能涵盖复习材料中大部分的例题,另外,大家还可以参照专门讲题型的书,用自己总结的题型和复习材料上的进行对照,通过对照充实自己总结出来的题型。

  第三个层次是对题型解法的归纳总结。有了第二个层次的归纳总结,我们对考研数学的畏惧心理都消失了,你已经知道了考研数学可能考你的方式、方法和角度了,现在要做的是对总结的题型进行解题方法的总结了。我们的方法是首先根据自己做过的一种题型的若干例题总结出典型的解题思路形成有效的解题程序和过程。对于一种题型我们可以从不同的例题中归纳出多种的方法和思路。之后,我们对照复习材料进行充实和改造自己归纳的解题思路和方法,尽可能多的把能用的思路和方法总结出来。

  第四个层次是解题思路的升华。有了第三个层次的归纳总结,我们对自己遇到的题目就心中有底了,我们已经知道,一般的题目只要按照自己总结的方法一种一种的去试,基本上能把题目做出来,只不过我们的解题的速度不快,这时侯我们需要在第三个层次的基础上进行思路的升华,找到最好的对付一类题型的解题方法,提高我们的解题速度!我们的方法是在自己总结的方法中找最快捷和最适合自己发挥的解题思路,之后去找些有关题型的复习材料做些比较,再看看自己的方法和这些材料的方法哪个更适合自己。


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展2)

——考研数学极限与导数复习方法 (菁选2篇)

考研数学极限与导数复习方法1

  极限

  极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到*均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。

  极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极

  限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。

  四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。

  与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水*、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。

  导数

  求导与求微分每年直接考查的知识所占分值*均在10分到13分左右。常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。

  对于导数与微分,首先对于它们的定义要给予足够的重视,按定义求导在分段函数求导中是特别重要

  的。应该熟练掌握可导、可微与连续性的关系。求导计算中常用的方法是四则运算法则和复合函数求导法则,一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式不变性,利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数。幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。

  导数计算中需要掌握的常见类型有以下几种:1、基本函数类型的求导;2、复合函数求导;3、隐函数求导,对于隐函数求导,不要刻意记忆公式,记住计算方法即可,计算的时候要注意结合各种求导法则;4、由参数方程所确定的函数求导,不必记忆公式,要掌握其计算方法,依据复合函数求导法则计算即可;5、反函数的导数;6、求分段函数的导数,关键是求分界点处的导数;7、变上限积分求导,关键是从积分号下把提出;8、偏导数的计算,求偏导数的***则是固定其余变量,只对一个变量求导,在此法则下,基本计算公式与一元函数类似。

  导数的计算需要考生不断练习,直到对所有题目一见到就能够熟练、正确地解答出来。

  无论是强化阶段还是冲刺阶段希望考生们都能够重视对于一些基本概念、理论的学习和巩固。希望同学们坚持到底,收获属于自己的美丽!

考研数学极限与导数复习方法2

  复习时间系统安排

  在暑假期间,大家首先要这段时间将教材过一遍,将大纲规定的知识点弄清楚。这个阶段的工作很细碎,但很重要,一定要细致地做好。可以报一个考研辅导班,并利用假期时间消化。通过老师辅导可以将前一阶段的知识串起来,提高自己解综合题的能力;到了下个学期就要进入做模拟题、提高能力和查缺补漏了。到了考试前20天左右,就要将自己以前的复习整理一下,看一下笔记,将以前消化的巩固下来,不清楚的弄清楚。

  会做的就不能丢分

  考研数学试题从来未出现过超纲现象,只要考生把全部基本的概念、原理搞懂了,就相当于全部押中考题。从之前考研的情况来看,考生失分的主要原因是基本功不过关,大多数考生往往因为一个考点没掌握而影响了整道题的运算,最终导致失分。在复习过程当中,大家一定要重视数学概念、原理的掌握和计算过程的训练,争取在考试过程中,只要是会的就不丢分。

  无法预测,只能注意细节

  从最近这几年数学一来讲,有一个比较值得注意的问题,出现了图形命题这种形式。数学一在最近连续两年出现导数应用用图形来描述的问题,在数学二,数学三,数学四,估计以后可能也会朝这个方向去做。所以这个倒是值得应该注意的这么一个问题。至于说其它的哪些考试,或者哪些考这种东西,确实比较难以去预测这个问题。可是有这样一种特点,假如我们看一看考试大纲的话往往可以看到这样,在考试大纲里头所列出哪些知识点,经过了多年考试以后,基本上全都考到了,也就是说在考试大纲里头所列出的那些考点的话经过几年以后,基本上都能够轮得到。


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展3)

——考研数学高数求极限的复习方法及常考题型 (菁选2篇)

考研数学高数求极限的复习方法及常考题型1

  解决极限的方法如下:

  1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

  2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于**穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

  3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

  4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!

  5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

  6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

  7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

  8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

  9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

  10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)

  11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。

  12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。

  13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

  14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

  15、单调有界的性质,对付递推数列时候使用证明单调性!

  16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!

  函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:

  1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);

  2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;

  3、复合函数之间是自变量与应变量互换的关系;

  4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数**相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。

  下面总结一下,求极限的一般题型:

  1、求分段函数的极限,当函数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数**无穷的结果是不一样的!

  2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉!

  解决办法:

  1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决?

  解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!)

  3、求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了!

  4、涉及到极限已经出来了让你求未知数和位置函数的问题。

  解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如:当x趋近0时候f(x)比x=3的函数,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用,主要是因为当未知数有几个时候,使用洛必达法则,可以消掉某些未知数,求其他的未知数。

  5、极限数列涉及到的证明题,只知道是要构造新的函数,但是不太会!!!

  :o最后总结一下间断点的题型:

  首先,遇见间断点的问题、连续性的问题、复合函数的问题,在某个点是否可导的问题。主要解决办法一个是画图,你能画出反例来当然不可以了,你实在画不出反例,就有可能是对的,尤其是那些考概念的题目,难度不小,对我而言证明很难的!我就画图!!我要能画出来当然是对的,在这里就要很好的理解一阶导的性质2阶导的性质,函数图形的凹凸性,函数单调性函数的奇偶性在图形中的反应!(在这里尤其要注意分段函数!(例如分段函数导数存在还相等但是却不连续这个性质就比较特殊!!应为一般的函数都是连续的);

  方法2就是举出反例!(在这里也是尤其要注意分段函数!!)例如一个函数是个离散函数,还有个也是离散函数他们的复合函数是否一定是离散的嘞?答案是NO,举个反例就可以了;

  方法3上面的都不行那就只好用定义了,主要是写出公式,连续性的公式,求在某一点的导数的公式

  :o最后了,总结一下函数在某一点是否可导的问题:

  1、首先函数连续不一定可导,分段函数x绝对值函数在(0,0)不可导,我的理解就是:不可导=在这点上图形不光滑。可导一定连续,因为他有个前提,在点的邻域内有定义,假如没有这个前提,分段函数左右的导数也能相等;

  主要考点1:函数在某一点可导,他的绝对值函数在这点是否可导?解决办法:记住函数绝对值的导数等于f(x)除以(绝对值(f(x)))再乘以F(x)的导数。所以判断绝对值函数不可导点,首先判断函数等于0的点,找出这些点之后,这个导数并不是百分百不存在,原因很简单分母是无穷小,假如分子式无穷小的`话,绝对值函数的导数依然存在啊,所以还要找出f(a)导数的值,不为0的时候,绝对值函数在这点的导数是无穷,所以绝对值函数在这些点上是不可导的啊。

  考点2:处处可导的函数与在,某一些点不可导但是连续的函数相互乘的函数,这个函数的不可导点的判断,直接使用导数的定义就能证明,我的理解是f(x)连续的话但是不可导,左右导数存在但是不等,左右导数实际上就是X趋近a的2个极限,f(x)乘以G(x)的函数在x趋近a的时候,f(x)在这点上的这2个极限乘以g(a),当g(a)等于0的时候,左右极限乘以0当然相等了,乘积的导数=f(a)导数乘以G(a)+G(a)导数乘以F(a),应为f(a)导数乘以G(a)=0,前面推出来了,所以乘积函数在这点上就可导了。导数为G(a)导数乘以F(a)。

考研数学高数求极限的复习方法及常考题型2

  ?考研数学线性代数相比较高等数学和概率论而言,呈现明显不同的学科特点——概念多、定理多、符号多、运算规律多、内容纵横交错以及知识点前后紧密联系。

  如果说高等数学的知识点算“条”的话,那么概率论就应该算“块”,而线性代数就是“网”!具体来看,线性代数这整张网,又是由行列式、矩阵、向量、线性方程组、特征值与特征向量以及二次型这6张小网相互交叉联结而成。而其中向量和线性方程组这两张网又在其中起着承前启后、上下衔接的关键作用。

  通过上面的分析,大家是不是发现——向量和线性方程组是线性代数的重难点内容,也是考研的重点和难点之一?这一点也可以从历年真题的出题规律上得到验证。

  关于第三章向量,无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是考察向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。

  关于第四章线性方程组,06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。

  考研数学线性代数暑期强化复习阶段重点应放在充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法上,并及时进行总结,抓联系,使所学知识能融会贯通,举一反三。

  ?向量—理解相关无关概念,灵活进行判定

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义、性质和定理的理解,然后就是分析判定的关键在于:看是否存在一组不全为零的实数。

  这部分题型有如下几种:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一)。

  要判断(证明)向量组的线性相关性(无关性),首先会考虑用定义法来做,其次会用向量组的线性相关性(无关性)的一些重要性质和定理结合反证法来做。同时会考虑用向量组的线性相关性(无关性)与齐次线性方程组有非零解(只有零解)之间的联系和用矩阵的秩与向量组的秩之间的联系来做。

  ?线性方程组——解的结构和(不)含参量线性方程组的求解

  要解决线性方程组解的结构和求法的问题,首先应考虑线性方程组的基础解系,然后再利用基础解系的线性无关性、与矩阵的秩之间的联系等一些重要性质来解决线性方程组解的结构和含参量的线性方程组解的讨论问题,同时用线性方程组解结构的几个重要性质求解(不)含参量线性方程组的解。

  即使是多么令童鞋闻风丧胆的数学,其实都有一定的规律可循。通过考试来分析整体情况,这样有重点复习,相信同学们一定会抓住数学,决胜数学!


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展4)

——考研提高数学复习效率的方法 (菁选2篇)

考研提高数学复习效率的方法1

  一、保持自己的复习节奏

  在考研的备考阶段,相信你有可能是与同伴或室友一起备战,那么这些"研友"或"战友"除了能够陪伴你读过漫长的备考时间,还有可能对你的进度造成一定程度的干扰,尤其是自我定力不够的同学更要注意。当别人谈到自己的考研复习进度时,无形之中便会给你增加一些精神压力,如果你这时候放弃了自己的进度和节奏,变成了跟着别人跑,那么在这一年里都将会变成别人的追随者。所以,考试的备考阶段就像一次长跑,必须把握自己的节奏,快或慢取决于自己的实力和安排,才能有的放矢,提高效率。

  所以按照自己的考研复习计划,循序渐进,切忌突击,临时抱佛脚,功夫下在*时。高等数学这门课在考研数学中占得比例很重。在数一和数三中占56%,在数学二中高达78%,所以高数这门课需要多花时间,多花精力,高数的成绩将直接挂钩你的考研成绩。

  二、不盲目"刷题"

  *时的生活中总有很多同学,埋头做题,几乎全部的时间都耗费在习题册和解题指南这类书里,然而最后的考研结果却并不能让人满意。究其原因,就在于*时全部靠做题来提高水*,对于知识完全没有自己的理解。不明白定理的内容含义、几何意义,就开始做题,刷题,最后做完也不知道自己做了什么,只知道自己又"充实"的过完一天。然而这样的效率并不高,我们要做到,学一天就要有一天的收获,看一天书就要有一定的提高。这样单位时间内你学的东西多了,就相当于你的备考时间得到了延长。

  所以复习考研数学切忌盲目"刷题"。

  那么,是不是自己看懂了课本定理,做一下课本例题就可以了呢?当然也不是。我们说不搞盲目"刷题",但并不是意味着可以不做题,题不仅要做,也要多做,但是要做到,每做一题就要有一个收获,一种心得,不然这个题就白做了,时间就浪费了。所以大量的练习对于数学学习也是非常必要的,但是大家要掌握好这个度。

  三、真题告诉你,重点在哪里

  历年的考研数学真题相信大家手里都有资料,那么如何利用历年考研数学真题,提高学习的效率呢?当大家复习完课本,做完了一定量的练习,一定要做真题,每一道真题都要仔细的分析和研究,至少做2-3遍真题。研究的方法主要有:总结出题的考点,应对的方法,对考点进行系统的梳理和汇总。把真题梳理好了就可以做一定的模拟卷,检测一下自己的复习水*,查缺补漏。提醒一点就是大家的'时间观念,考场上是一次计时的战斗,要求在规定的时间里完成任务,所以希望大家*时做题提高速度,把握好时间,避免出现考试时间不够,做不完的情况。

  最后我们用电影的主题曲《冠军》中的一段歌词与大家共勉:"当我踏**赛场,没有谁能**。就让生命去飞扬,呐喊在空中回响,勇敢地飞,为了曾经的日夜,挥洒沸腾的热血。"

考研提高数学复习效率的方法2

  一、熟悉基本的解题步骤和解题方法

  解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

  二、审题要认真仔细

  对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

  有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

  三、认真做好归纳总结

  在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

  四、熟悉习题中所涉及的内容

  解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

  因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

  五、学会画图

  画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

  因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

  六、先易后难,逐步增加习题的难度

  人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会**提高。

  我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

  七、限时答题,先提速后纠正错误

  很多同学做题慢的一个重要原因就是*时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展5)

——考研数学提高真题作用的方法 (菁选2篇)

考研数学提高真题作用的方法1

  一、以闭卷式,限定时间,模拟真实考试场景进行实战训练。

  作用:

  1、体验真实考试状态,提前熟悉真实考试场景,寻找参加正式考试的感觉;

  2、根据之后自己给分,发现知识水*差距,时间安排的合理性,明白学习重点和方向,有目的制定学习计划,将有限地时间用在提高自己的短板和弱势上。

  二、要善于思考。

  模拟之后,只看答案,不看解析,独自思考错误的原因和正确答案的理由。这样做的目的是为锻炼自己发现错误的能力。

  三、习题解析的研究。

  实在想不明白错误与正确原因的,就看解析说明,看明白则好,如果还是看不明白,一定记住正确答案,并努力学会从正确答案的方向去思考。王老师说,可能你不明白的原因很多,而很多人都容易出错的一大原因是自己的固执心态,没有任务原因的坚持自己的答案,所以顺着正确答案的方向去思考,能够很大程度地减少这种固执心态。

  四、阵阵分析考点。对考题进行总结。

  看完解析之后,总结每道试题的考点。在考点综述后面,列举了本节知识考点在历年统考中出现过的试题,并有详细的考点提示、试题分析和方法详解。在做完一套真题之后再做这部分练习,对掌握重点考点和巩固知识很有效。

  五、循规律,学会举一反三。

  最后,注意,每道试题都有它的出题规律,数学真题也不例外,它一定是有几个知识点,相互关联,互相推导,或互相替换,最后得到另一个知识点的,只要你认真研究,就不难能发现这些真题的了出题规律,所谓世上无难事,只怕有心人。

考研数学提高真题作用的方法2

  从整体来看,今年的试题线性代数部分在数一、数二、数三中的考试内容是一致的,虽然数一没有单独考查向量空间,但与大纲要求也是相符的。今年的线性代数试题整体看来难度不大,计算量也不是很大。其实线性代数最注重各个章节之间的联系,这点我们考研的数学老师在授课的时候一直强调。事实上,今年的线性代数命题人也是按这个思路命制考题的。

  我们来看看线性代数的两个解答题,即是数一、数三的21、22题,数二的22、23题。我们先看一下第一大题,这是一道有关线性方程组解的判定与求解问题。此题形式上是一个矩阵方程的问题,并且未知矩阵出现了两次,这在往年的试题中是不多见的。本题的关键是将的元素都设为未知数,利用矩阵乘法将其转化为线性方程组的求解。第二大题考查二次型,其中第一小题很简单,大家可以直接将所给的二次型对三项和的*方展开化简,然后按定义即可将二次型的矩阵写出,写出矩阵也就完成了第一小题的证明;也可以按矩阵乘法将所给二次型表达成矩阵形式,直接从矩阵形式写出二次型对应的矩阵。第二小题主要是利用特征值、特征向量的定义求出二次型的特征值,另外还要仔细观察题目中所给的已知条件,充分利用起来;此外,考生也可以求出与题中正交的单位向量(实际上是证明这个的存在即可),以它们为行向量作正交变换(即),从而可以直接将原二次型中的两个三项和改写成与。本题也考查了二次型的标准形,这里考生只需知道在正交变换下得到的标准形中的系数就是二次型矩阵的特征值即可。

  我们再来看看线性代数的三个选择、填空题,即是数一、数三的5、6、13题,数二的7、8、14题。第一题考查分块矩阵的的运算与向量组的线性表示,第二题考查矩阵的相似(这里是实对称矩阵的特殊情况),第三题考查伴随矩阵与矩阵的行列式,考查内容简单明确、覆盖面广,与解答题互为补充。

  从今年的线性代数部分的出题情况我们可以看出,线性代数题的难度不大,都是一些基础的知识,但是由于计算比较复杂,极易出现错误,考生因为粗心大意而算错的概率很大。在此,我们给2014届的考生提出如下建议。

  一、 注重基础,构建知识体系

  基本概念、基本方法、基本性质一直是考研数学的重点。线性代数的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。

  线性代数的知识点是三大科目里最少的,但基本概念和性质较多,他们之间的联系也比较紧密。考生特别要根据历年线性代数考试的'两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:线性方程组的三种形式之间的联系与转换;行列式的计算与矩阵运算之间的联系与差别;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。

  二、 参照大纲,提高综合能力

  大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。

  三、分类训练,培养应变能力

  近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。

  总之,考生在复习线性代数的时候要注重基础,打好基本功,并结合一些综合性的试题培养自己的分析解决问题能力,加深对知识的理解。一些考生在复习时过分追求难题,而对基本概念,基本方法和基本性质重视不够,投入不足,考研的老师警醒大家这样做是不对的,应该及时纠正。

  此外,数学的学习不是看明白资料就行的,必须**完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法**解决的问题,应该有针对性地与学友讨论或者请教老师。


考研数学极限的运算方法及适用情况 (菁选2篇)(扩展6)

——考研数学重点题型及解题方法分析

考研数学重点题型及解题方法分析1

  极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,*均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。其中,极限的计算是核心考点,考题所占比重最大,因此,熟练掌握求解极限的方法是得高分的关键。

  极限计算的常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等。

  四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,是基础阶段的学习重点,考生应该已经非常熟悉。之后针对一些较为复杂的极限计算,运用泰勒公式会达到简化计算的效果,熟记一些常见的麦克劳林公式也往往可以事半功倍。此外,夹逼定理、定积分定义常常用来计算某些和式的'极限,单调有界收敛定理多用来证明数列极限存在,以及求递归数列的极限。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除