等腰三角形的判定
等腰三角形的判定(精选7篇)
等腰三角形的判定 篇1
知识结构: 重点与难点分析: 本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 知识结构: 重点与难点分析: 本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 知识结构: 重点与难点分析: 本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 第 1 2 页 知识结构: 重点与难点分析: 本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 知识结构: 重点与难点分析: 本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 重点与难点分析: 本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握等腰三角形的判定定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:等腰三角形的判定定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 教材分析:本节内容是继上一节“等腰三角形的性质-----等边对等角”之后。首先由“在一个三角形中-----等角对等边”是否成立引出;之后通过学生动手操作探究;然后得出“等角对等边”定理;此定理是证明线段相等的又一种重要方法,为以后几何学习提供重要的证明和计算依据,所以等腰三角形的判定在本章及初中阶段有非常重要的地位。 学情分析:学生通过前面的学习,对几何推理论证有了一定的基础和经验,但水平层次不齐,有的学生对几何学习产生极大兴趣,有的学生存在识图难、产生为难情绪。 教学目标: (一)知识与技能 1.c组掌握“等角对等边”的几何推理方法,并能够综合运用有关定理解决几何说理题。 2.b组学会运用全等的方法证明“等角对等边”,并能运用有关定理解决简单几何说理题。 3.a组学会正确运用“等角对等边”解决问题,并能够区分“等角对等边”与“等边对等角”。 (二)过程与方法 1.c组经历用几何推理方法得到“等角对等边”的过程,提高他们的几何推理能力。 2.b组、a组经历动手操作方法验证“等角对等边”,提高他们的归纳猜想能力。 (三)情感态度、价值观 激发全体学生的探究热情,体验探究成功的快乐,帮助学生树立学习信心。在数学思维中,培养严谨的态度。 教学重点:等腰三角形的判定定理及运用. 教学难点:正确区分等腰三角形的判定与性质.能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程: (一)复习旧知,导入新课 1.教师提问a组:(如图1)在△abc中,如果ab=ac,你能得到什么结论? 2.教师提问b组:(如图2)在△abc中,如果ab=ac,ad=bd=bc,你能得到哪些等角? 图1 图2 (二)探究新知 1.问题解决 (1)提出问题:(如图3)在△abc中,如果∠b=∠c,那么ab=ac吗? 图3 (2)学生讨论验证方法:折叠法;测量法;几何推理法(教师引导辅助线的添加) (3)自主解决:c组写出几何推理过程;a组动手操作验证;b组自愿选择。 (4)交流总结:先a组动手操作演示;然后找c组口述几何推理过程;之后,师生共同总结出“等角对等边”的结论。 2.例题学习 (1)求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。 学生小组讨论解决:c组学生根据已知画出图形,写出已知、求证;b组学生写出几何推理过程。 (2)如图,ac和bd相交于点o,且ab∥dc,oa=ob,求证:oc=od. b组学生自主完成,c组学生帮助a组学生完成。一名学生板演。 3.归纳总结(学生先独立思考再小组交流) (1)先认准一个三角形中两个等角所对的两条边,然后写出结论。 (2)“等边对等角”是已知一个三角形的两条边相等,再得角相等,它是等腰三角形的性质定理;而“等角对等边”是由一个三角形的两个等角得到两个边相等,它是等腰三角形的判定定理,也证明线段相等的重要方法。 应用:等边三角形的判定 (1)三个内角相等的三角形,各个内角的度数是多少?(b组学生回答) (2)三个内角相等的三角形是等边三角形吗?(c组学生回答) (3)底角是60°的等腰三角形是等边三角形吗?顶角是60°的等腰三角形是等边三角吗?(a组学生回答) (4)请你概括一下等边三角形的条件。(a组学生回答) (三)分层作业,共同提高 a组首先完成以下必做题目,再尝试完成b组必做题目: 1.在rt△abc中,如果∠c=90°,∠a=∠b=45°,那么 △abc是什么三角形? 2.在△abc中,如果∠a=70°∠c=40°,那么△abc是什么三角形? b组学生首先完成以下必做题目,再尝试完成c组学生必做题目: 1.课本p79 1、2 。 c组学生完成: 课本p79 3 (四)畅谈收获,回顾反思 不同层次的学生谈自己本节课的收获。 课后反思 在本节课上,对于三个不同层次的学生,我设置不同的学习方法,给他们搭建不同的舞台,他们感到了被关注、被尊重,激发了学生的学习积极性,大部分学生都能完成自己的学习任务,而且c组学生能在完成学习任务的同时帮组a组学生,体现同伴互助,使不同的学生有不同的收获,都有成功的体验,增强了自信心。 在教学过程中,也存在一些不足,问题设计的不是很合理,对a组学生引导、关注还欠缺,对c组学生应在如何进一步拔高多下功夫,从而解决他们“吃不饱”的问题。等腰三角形的判定 篇2
等腰三角形的判定 篇3
等腰三角形的判定 篇4
等腰三角形的判定 篇5
等腰三角形的判定 篇6
等腰三角形的判定 篇7
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除