高中数学解三角形知识点 (菁选2篇)

高中数学解三角形知识点1

  (一) 解斜三角形

  1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各种形式的面积的公式。

  2、能解决的四类型的问题:(1)已知两角和一条边(2)已知两边和夹角(3)已知三边(4) 已知两边和其中一边的对角。

  (二) 解直角三角形

  1、解直角三角形的主要定理:在直角三角形ABC中,直角为角C,角A和角B是它的两锐角,所对的边a、b、c,(1) 角A和角B的和是90度;

  (2) 勾股定理:a的*方加上+b的*方=c的*方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面积的公式s=ab/2;此外还有射影定理,内外切接圆的半径。

  2、解直角三角形的四种类型:

  (1)已知两直角边:根据勾股定理先求出斜边,用三角函数求出两锐角中的一角,再用互余关系求出另一角或用三角函数求出两锐角中的两角;

  (2)已知一直角边和斜边,根据勾股定理先求出另一直角边,问题转化为(1);

  (3)已知一直角边和一锐角,可求出另一锐角,运用正弦或余弦,算出斜边,用勾股定理算出另一直角边;(4)已知斜边和一锐角,先算出已知角的对边,根据勾股定理先求出另一直角边,问题转化为(1)。

  如何学好高中数学

  1.先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  2.做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  3.主动复*结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的*方sin2(A))

高中数学解三角形知识点2

  判断解法

  已知条件:一边和两角

  一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。

  已知条件:两边和夹角

  一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。

  已知条件:三边

  一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。

  已知条件:两边和其中一边的对角

  一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)

  ①若a>b,则A>B有唯一解;

  ②若b>a,且b>a>bsinA有两解;

  ③若a

  常用定理

  正弦定理

  a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

  变形公式

  (1)a=2RsinA,b=2RsinB,c=2RsinC

  (2)sinA:sinB:sinC=a:b:c

  (3)asinB=bsinA,asinC=csinA,bsinC=csinB

  (4)sinA=a/2R,sinB=b/2R,sinC=c/2R

  面积公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)

  余弦定理

  a?=b?+c?-2bccosA

  b?=a?+c?-2accosB

  c?=a?+b?-2abcosC

  注:勾股定理其实是余弦定理的一种特殊情况。

  变形公式

  cosC=(a?+b?-c?)/2ab

  cosB=(a?+c?-b?)/2ac

  cosA=(c?+b?-a?)/2bc

  高三数学知识点有哪些

  1、混淆命题的否定与否命题

  命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

  2、忽视集合元素的三性致误

  集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

  3、判断函数奇偶性忽略定义域致误

  判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

  4、函数零点定理使用不当致误

  如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“**为力”的,在解决函数的零点问题时要注意这个问题。

  5、函数的单调区间理解不准致误

  在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

  6、三角函数的单调性判断致误

  对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

  7、向量夹角范围不清致误

  解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

  8、忽视零向量致误

  零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

  9、对数列的定义、性质理解错误

  等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差数列。

  10、an与Sn关系不清致误

  在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。


高中数学解三角形知识点 (菁选2篇)扩展阅读


高中数学解三角形知识点 (菁选2篇)(扩展1)

——初中数学三角形的知识点3篇

初中数学三角形的知识点1

  一、三角形的有关概念

  1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

  三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

  2.三角形中的三条重要线段:角*分线、中线、高

  (1)角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

  (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  说明:①三角形的角*分线、中线、高都是线段;

  ②三角形的角*分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

  二、三角形的边和角

  三边关系:三角形中任意两边之和大于第三边。

  由三边关系可以推出:三角形任意两边之差小于第三边。

  三、三角形内、外角的关系

  1.三角形的内角和等于180°。

  2.直角三角形的两个锐角互余。

  3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

  4.三角形的外角和为360°。

  四、等腰三角形与直角三角形:

  1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

  说明:等边三角形是等腰三角形的特殊情况。

  2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

  五、三角形的分类:

  六、三角形的面积:

  1.一般计算公式。

  2.性质:等底等高的三角形面积相等。

  七、常见考法

  (1)考查三角形的性质和概念;(2)根据三角形内角和以及内、外角关系,给出已知两角,来求第三个角;(3)根据三角形内、外角的关系,比较两角大小的;(4)利用三边关系判断三条线段能否组成三角形或给出三角形的两边长,来确定第三边长的取值范围,亦或证明线段之间的不等关系。

  八、误区提醒

  忽略构成三角形的条件。

  【典型例题】(2010年山西)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为 ( )

  A.1个 B.2个 C.3个 D.4个

  【解析】选4cm,6cm,8cm可以组成1个,选6cm,8cm,10cm 可以组成1个,选 4cm,8cm,10cm又可以组成1个,所以能组成的三角形个数为3个,故本题选C。

初中数学三角形的知识点2

  一、轴对称图形

  1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

  3、轴对称图形和轴对称的区别与联系

  4、轴对称的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直*分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。

  ④如果两个图形的对应点连线被同条直线垂直*分,那么这两个图形关于这条直线对称。

  二、线段的垂直*分线

  1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直*分线,也叫中垂线。

  2、线段垂直*分线上的点与这条线段的两个端点的距离相等

  3、与一条线段两个端点距离相等的点,在线段的垂直*分线上

  三、用坐标表示轴对称小结:

  在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数、关于y轴对称的点横坐标互为相反数,纵坐标相等、

  2、三角形三条边的垂直*分线相交于一点,这个点到三角形三个顶点的距离相等

  四、(等腰三角形)知识点回顾

  1、等腰三角形的性质

  ①、等腰三角形的两个底角相等。(等边对等角)

  ②、等腰三角形的顶角*分线、底边上的中线、底边上的高互相重合。(三线合一)

  2、等腰三角形的判定:

  如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  五、(等边三角形)知识点回顾

  1、等边三角形的性质:

  等边三角形的三个角都相等,并且每一个角都等于600 。

  2、等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的'一半。

  1、等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角*分线*分底边并且垂直于底边。即等腰三角形的顶角*分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  2、等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

  推论1:三个角都相等的三角形是等边三角形

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。


高中数学解三角形知识点 (菁选2篇)(扩展2)

——数学三角形的知识点 (菁选3篇)

数学三角形的知识点1

  新gre数学考试出现了无选项计算题,及要求考生根据题目条件直接计算答案,而不能从选项中牌数,这意味着对于考生的新gre数学解题思路要求的提高,下面是小编为大家搜索整理的有关新gre数学三角形方面的GRE考题:

  Equilateral triangle: 等边三角形

  Scalene triangle: 不等边三角形

  Isosceles triangle: 等腰三角形

  Right triangle: 直角三角形

  Pythagorean theorem: 毕达哥拉斯定理

  Congruent triangles 全等三角形

  Similar triangles 相似三角形

  Oblique 斜三角形

  Inscribed triangle 内接三角形

  1)一个Triangle,a,b,c是它的三个边,切大小递减。比较a-c 和b 的大小。回答:B大

  2) 一个等边三角形的周长是P,问它的高用P标示是多少 所以高=P根号3 /6.

  3) 给个等边三角形 变长x 面积跟号2 y 求 用x 表示y

  4) 边长是X的正三角形,给面积等于根号三y,然后让用x表示y

  5) 正三角形变长x,面积为y乘以根号3,用y表示x

  6) 一个Triangle每个边上有一道弧,每道弧的圆心分别是三个顶点,告诉你一条边长k,问弧总长度和k哪个大

  7) 2x+y=8,问和x y轴包围的三角形的周长

数学三角形的知识点2

  一、认识角

  1、 角的特征:一个顶点,两条边(直的)

  2、 角的大小:与两条边**的大小有关,与两条边的长短无关。

  3、 角的画法:(1)、定顶点。(2)、由这一点引一条直线。(3)、画另一条边(直角时,用直角边对准画好的一条边后,沿着另一条直角边,画线)

  二、角的分类:

  1、认识直角:直角的特点,

  2、认识锐角和钝角:锐角比直角小,钝角比直角大。

  3、会用三角尺来判断直角、锐角和钝角:吧三角尺上直角的顶点与被比较角的顶点重叠在一起,再将三角尺上直角的一条边与被比角的一条边重合,最后比较三角尺上直角的另一条边与被比角的另一条边,线上为直角,内为锐角,外为钝角。

  4、画直角、锐角和钝角。

数学三角形的知识点3

  全等三角形形状与大小完全相等,与位置无关,这是大家要注意的。

  全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)

  角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)

  角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

  斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)

  我们可以把一个三角形经过*移、翻折、旋转可以得到它的全等形。

  初中数学知识点总结:*面直角坐标系

  下面是对*面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  *面直角坐标系

  *面直角坐标系:在*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。

  水*的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为*面直角坐标系的原点。

  *面直角坐标系的要素:①在同一*面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对*面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:*面直角坐标系的构成

  对于*面直角坐标系的构成内容,下面我们一起来学习哦。

  *面直角坐标系的构成

  在同一个*面上互相垂直且有公共原点的两条数轴构成*面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水*位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水*的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对*面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了*面直角坐标系后,对于坐标系*面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标*面内确定它所表示的一个点。

  对于*面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的`形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。


高中数学解三角形知识点 (菁选2篇)(扩展3)

——高中数学解三角形说课稿 (菁选2篇)

高中数学解三角形说课稿1

  一、 教材简析:

  本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。

  同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。

  二、教学目的、重点、难点:

  教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。

  重点:

  1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。

  2、正确选择边与角的关系以简便的解法解直角三角形

  难点:把实际问题转化为数学问题。

  学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。

  三、教学目标:

  1、知识目标:

  (1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。

  (2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、

  45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。

  (3)运用三角函数解决与直角三角形有关的简单的实际问题。

  (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、

  2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。

  3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.

  四、、教法与学法

  1、教法的设计理念

  根据基础教育课程**的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。

  2、学法

  学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。

高中数学解三角形说课稿2

  一、教材分析

  (一)教材地位

  直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。

  (二)教学目标

  这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:

  1.通过观察、交流等活动,会建立直角三角形模型。

  2.经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣.

  (三)重点难点

  1.重点:熟练运用有关三角函数知识.

  2.难点:如何添作辅助线解决实际问题.

  二、教法学法

  1.教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。

  2.学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。

  三、教学程序

  (一)准备阶段

  我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。

  预习作业:

  1. 如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?

  2. 填表:锐角α 三角函数

  3. 已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水*距离为 m,求这栋高楼有多高?

  4. 如图:AB=200m,在A处测得点C在北偏西300的方向上,在 B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?

  5. 如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE= ,求BE的长。

  (二)课堂教学过程

  1.预习作业的交流

  小组交流预习作业并由学生**展示。

  2.新知探究

  (1)教师出示问题1

  如图:要在木里县某林场东**向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?

  追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

  (2)出示问题2

  如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。

  追问:如果改变若干条件,你能设计出其他问题吗?

  (3)出示问题3

  气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB= km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。

  如:(1)台风中心生成点B的坐标为 ,台风中心转折点C的坐标为 (结果保留根号)。

  (2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

  3.巩固练习

  飞机在高空中的A处测得地面C的俯角为450,水*飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据: 1.73)

  4.课堂小结

  请学生围绕下列问题进行反思总结:

  (1)解直角三角形有哪些基本模型?

  (2)本节课涉及到哪些数学思想?

  (3)你觉得如何解直角三角形的实际问题?

  5、布置作业

  复习第29章《投影与视图》具体见试卷

  6、课堂检测

  1.如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水*距离.

  2. 如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO .

  3.如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC.

  四、设计思路

  本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。


高中数学解三角形知识点 (菁选2篇)(扩展4)

——数学三角形的内角教案3篇

数学三角形的内角教案1

  【教学内容】:

  人教版义务教育课程标准试验教科书数学四年级下册第67页。

  【设计理念】

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉*角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活**教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  学生已经掌握三角形特性和分类,熟悉了钝角、锐角、*角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

  【学习目标】

  1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

  2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

  3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为*角的探究活动,向学生渗透“转化”数学思想。

  4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  【教学重点】

  探索和发现“三角形的内角和是180°”。

  【教学难点】

  运用三角形的内角和解决实际问题。

  【教学准备】

  教师:多**课件、剪好的不同类型的三角形。

  学生:量角器、剪刀、剪好的不同类型的三角形。

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语。

  师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

  师:打一几何图形。猜猜看!

  学生猜谜语。

  根据学生的回答,课件出示谜底。

  师:真是三角形,同学们的反应真快!

  2、复习三角形的内容。

  其实,三角形我们并不陌生,它是一种特别的*面图形。关于三角形,你们已经掌握了哪些知识?

  指名学生回答。

  (当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

  3、引出课题。

  师:同学们知道的还真不少,可见你们*时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

  (板书课题:三角形的内角和)

  二、探究新知

  1、讨论、交流验证知识的方法。

  师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

  学生汇报:①用量的方法;②用拼的方法;③用折的方法......

  2、操作验证。

  师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

  选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

  3、学生汇报。

  师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

  学生汇报,教师适时板书。

  ①用量的方法:

  指名学生汇报度量的结果,教师板书。(指两名学生汇报)

  教师白板演示测量方法,并计算和板书出结果。

  教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

  师:可能我们测量的'时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

  ②用拼的方法

  a、学生汇报拼的方法并**演示。

  我这里也有一个钝角三角形,请两名同学**演示。

  b、请大家四人小组合作,用他的方法验证其它三角形。

  c、展示学生作品。

  d、师课件展示。

  师:我们用量、拼得到了180度,还有什么方法?

  ③用折的方法

  师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

  师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

  教师根据学生板书:(任意)三角形的内角和是180度。

  ④数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

  三、巩固练习

  数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

  1、课件出示:我是小判官(对的打“√”错的“×”。)

  强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

  教师:为什么不是360°?学生回答。

  2、接下来我要奖励你们一个游戏:《帮角找朋友》

  3、求未知角的度数。

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  ①课件出示第一个三角形,学生尝试**完成,教师巡视。

  教师:刚才,我们利用了三角形的什么?

  ②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

  a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。

  教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

  四、拓展延伸

  师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

  接着让学生尝试求5边形和6边形的内角和。

  小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

  五、课堂总结。

  师:这节课你有什么收获?

  学生**发言。

  师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

  同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

  六、作业布置

  完成教材练习十六的第1、3题。

  七、板书设计:

  (任意)三角形的内角和是180°

  ∠1+∠2+∠3=180°

  度量剪拼折拼

数学三角形的内角教案2

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳

总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:检验三角形的内角和是180°。

  教学难点:引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:问题情境与

  教师活动:学生活动**应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。

()

  (2)三角形的内角和可能是180度。

()

  (3)一个三角形中最多只能有一个直角。

()

  (4)三角形的三个内角分别可能是30度,60度,70度。

()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、

总结:这节课你有什么收获?

数学三角形的内角教案3

  教学目标:

  1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。

  2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。

  3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成**思考的好习惯。

  教学重点:

  让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。

  教学难点:

  三角形内角和的探索与验证。

  教学准备:

  量角器各种类型的三角形(硬的纸板)三角板

  教学过程:

  一、设疑激趣,导入新课

  师:今天老师给大家带来了一位朋友(课件)出示三角形,

  师:对于三角形你有哪些认识与了解。

  生:三角形有锐角三角形、直角三角形、钝角三角形

  生:由三条线段围成的*面图形叫三角形。

  师:介绍内角、内角和

  三角形中每两条边组成的角叫做三角形的内角。

  师:三角形有几个内角。

  生:三个。

  师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?

  生1:我通过直角三角板知道的

  生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度

  生3:我预习了,三角形内角和就是180度)

  师:是不是向他们说的一样,所有的三角形内角和都是180度呢?

  二、自主探索,进行验证

  师:你打算怎样验证呢?

  生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来

  师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗?生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个*角

  生3:把三个角顺次画下来也可以

  生4:拼一拼的方法

  师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多**课件展示操作要求:

  合作探究:

  1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证

  2、看那个小组验证的方法新、方法多

  师:在巡视,并进行个别操作指导

  三、交流探索的方法和结果

  孩子们探索的方法可能有三个:

  生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个*角,由此得出三角形中三个角的和是180度。

  生3:三是折一折,把三个角折在一起,折在一起成为一个*角,由此得出三角形中三个角的和是180度。

  四、归纳总结,体验成功

  师:孩子们,三角形中三个角的度数和到底是多少度呢?

  生:180度。

  五、拓展应用

  1、基础练习

  2、等边三角形、等腰三角形、直角三角形

  六、课堂小结

  谈一谈自己的学习收获。


高中数学解三角形知识点 (菁选2篇)(扩展5)

——《三角形》说课稿3篇

《三角形》说课稿1

  本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。

  一、教材分析及教学目标

  本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。

  二、教学准备工作

  课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。

  三、教学方法

  采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。

  四、教学时数

  1课时

  五、教具

  为增大课堂教学的容量和提高效率,采用多**辅助教学。

  六、教学过程

  (一)激情导入

  在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?

  板书课题:三角形外角和

  (二)新课讲授:

  1、探究三角形外角的两条性质

  对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。

  探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全

  2、探究三角形外角和定理。

  这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。

  本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。

  (三)小结

  回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。

  总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的'能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。

  力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。

《三角形》说课稿2

  本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。

  一、教材分析及教学目标

  本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。

  二、教学准备工作

  课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。

  三、教学方法

  采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。

  四、教学时数

  1课时

  五、教具

  为增大课堂教学的容量和提高效率,采用多**辅助教学。

  六、教学过程

  (一)激情导入

  在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?

  板书课题:三角形外角和

  (二)新课讲授:

  1、探究三角形外角的两条性质

  对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。

  探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全

  2、探究三角形外角和定理。

  这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。

  本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。

  (三)小结

  回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。

  总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。

  力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。

《三角形》说课稿3

  一、说教材

  (一)、内容:

  《三角形的特性》是人教版义务教育课程标准实验教科书80—81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的.稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从*面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。

  (二)、教学目标:

  1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。

  3、培养学生观察,操作能力和应用数学知识解决实际问题。

  (三)、教学重点:理解三角形的特性。

  (四)、教学难点:在三角形内画高。

  二、说教法

  (一)、情境教学法。

  在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。

  (二)、操作讨论法。

  在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了**者,引导者与合作者的作用。

  三、说学法。

  (一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。

  (二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。

  四、说教学程序。

  (一)、联系生活,情境导入

  1、出示80页情境图,学生观察,发现描述三角形。

  2、说一说:生活中还有哪些物体上有三角形。

  3、课件出示生活中常见的物体上的三角形。

  4、导入并板书课题。

  (二)、操作感知,理解概念

  1、发现三角形的特征

  2、概括三角形的定义

  (1)、引导学生用自己的话概括什么叫三角形?

  (2)、议一议:下面的图形是不是三角形?

  (3)、讨论:哪种说法更准确?

  (4)、指导阅读80页“三角形”定义。

  3、认识三角形的底和高

  (1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。

  (2)、你是怎么测量的?(学生交流汇报)。

  (3)、讲解测量过程?(得出:三角形高、底的概念)。

  (4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。

  4、拓展

  在三角形ABC中,以AB为底边的高是();以AC为底边的高是();以BC为底边的高是()。

  (三)、实验解疑,探索特性

  1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?

  2、实验解疑

  (1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?

  (2)、得出结论:三角形具有稳定性。

  (3)、举例说出生活中应用三角形稳定性。

  (四)、巩固运用,提高认识

  课件出示练习十四:1、2、3题

  (五)、总结评价,质疑问难

  1、本节课学习了什么内容?

  2、你对三角形有了哪些认识?


高中数学解三角形知识点 (菁选2篇)(扩展6)

——七年级下册数学三角形知识点归纳3篇

七年级下册数学三角形知识点归纳1

  1、三角形的定义

  由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。

  三角形有三条边,三个内角,三个顶点。组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点。

  2、三角形的表示

  三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。三个顶点用大写字母A,B,C来表示。

  注意:

  (1)三条线段要不在同一直线上,且首尾顺次相接;

  (2)三角形是一个封闭的图形;

  (3)△ABC是三角形ABC的符号标记,单独的△没有意义。

  3、三角形的主要线段的定义

  (1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)

  三角形中,连结一个顶点和它对边中点的线段。

  表示法:

  ①AD是△ABC的BC上的中线。

  ②BD=DC=1/2 BC

  注意:

  ①三角形的中线是线段;

  ②三角形三条中线全在三角形的内部且交于三角形内部一点(注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)

  ③中线把三角形分成两个面积相等的三角形。

  (2)三角形的角*分线

  三角形一个内角的*分线与它的对边相交,这个角顶点与交点之间的线段

  表示法:

  ①AD是△ABC的∠BAC的*分线。

  ②∠1=∠2=∠BAC。

  注意:

  ①三角形的角*分线是线段;

  ②三角形三条角*分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。角*分线的性质:角*分线上的点到角的两边距离相等)

  ③用量角器画三角形的角*分线。

  (3)三角形的高

  从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。

  表示法:

  ①AD是△ABC的BC上的高线

  ②AD⊥BC于D

  ③∠ADB=∠ADC=90°。

  注意:

  ①三角形的高是线段;

  ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点。这点叫垂心)

  ③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)

  4、三角形的角与角之间的关系

  (1)三角形三个内角的和等于180°;

  (2)三角形的一个外角等于和它不相邻的两个内角的和;

  (3)三角形的一个外角大于任何一个和它不相邻的内角。

  (4)直角三角形的两个锐角互余。

  数学加法心算技巧

  1、**再凑整数加法;

  比如;8+5=13,先把“5”**成“2”和“3”;那么就是8+2+3=10;

  2、比如;77+8=85,先把“8”**成“3”和“5”;那么就是77+3+5=85;

  3、变整数再减去

  比如,26+18=44,把“18”变成“20—2”,那么就是26+20—2=44;

  4、比如;387+983=1370,把“983”变成“1000—17”,那么就是387+1000—17=1370;

  5、错位数相加

  比如,个位加十位得数是个位的;

  51+15=66;这样算:5+1得6;1+5得6;两*拼

  72+27=99;这样算:7+2得9;2+7得9;两9合拼

  63+36=99;这样算:6+3得9;3+6得9;两9合拼

  52+25=77;这样算:5+2得7;2+5得7;两7合拼

  6、比如,个位加十位得数是十位的;

  78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;

  67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;

  如何学好初中数学

  学好初中数学的方法有重视课本的内容、通过联系对比进行辨析、多做练习题、课后总结和反思等等。

七年级下册数学三角形知识点归纳2

  1、三角形的定义

  由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。

  三角形有三条边,三个内角,三个顶点。组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点。

  2、三角形的表示

  三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。三个顶点用大写字母A,B,C来表示。

  注意:

  (1)三条线段要不在同一直线上,且首尾顺次相接;

  (2)三角形是一个封闭的图形;

  (3)△ABC是三角形ABC的符号标记,单独的△没有意义。

  3、三角形的主要线段的定义

  (1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)

  三角形中,连结一个顶点和它对边中点的线段。

  表示法:

  ①AD是△ABC的BC上的中线。

  ②BD=DC=1/2 BC

  注意:

  ①三角形的中线是线段;

  ②三角形三条中线全在三角形的内部且交于三角形内部一点(注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)

  ③中线把三角形分成两个面积相等的三角形。

  (2)三角形的角*分线

  三角形一个内角的*分线与它的对边相交,这个角顶点与交点之间的线段

  表示法:

  ①AD是△ABC的∠BAC的*分线。

  ②∠1=∠2=∠BAC。

  注意:

  ①三角形的角*分线是线段;

  ②三角形三条角*分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。角*分线的性质:角*分线上的点到角的两边距离相等)

  ③用量角器画三角形的角*分线。

  (3)三角形的高

  从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。

  表示法:

  ①AD是△ABC的BC上的高线

  ②AD⊥BC于D

  ③∠ADB=∠ADC=90°。

  注意:

  ①三角形的高是线段;

  ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点。这点叫垂心)

  ③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)

  4、三角形的角与角之间的关系

  (1)三角形三个内角的和等于180°;

  (2)三角形的一个外角等于和它不相邻的两个内角的和;

  (3)三角形的一个外角大于任何一个和它不相邻的内角。

  (4)直角三角形的两个锐角互余。

  数学加法心算技巧

  1、**再凑整数加法;

  比如;8+5=13,先把“5”**成“2”和“3”;那么就是8+2+3=10;

  2、比如;77+8=85,先把“8”**成“3”和“5”;那么就是77+3+5=85;

  3、变整数再减去

  比如,26+18=44,把“18”变成“20—2”,那么就是26+20—2=44;

  4、比如;387+983=1370,把“983”变成“1000—17”,那么就是387+1000—17=1370;

  5、错位数相加

  比如,个位加十位得数是个位的;

  51+15=66;这样算:5+1得6;1+5得6;两*拼

  72+27=99;这样算:7+2得9;2+7得9;两9合拼

  63+36=99;这样算:6+3得9;3+6得9;两9合拼

  52+25=77;这样算:5+2得7;2+5得7;两7合拼

  6、比如,个位加十位得数是十位的;

  78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;

  67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;

  如何学好初中数学

  学好初中数学的方法有重视课本的内容、通过联系对比进行辨析、多做练习题、课后总结和反思等等。


高中数学解三角形知识点 (菁选2篇)(扩展7)

——三角形教案3篇

三角形教案1

  教学目标

  1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

  2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

  教学重点:认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  教学难点:会在三角形内三条边上画高。

  教学准备:师生分别准备木条(或硬纸条)钉成的三角形。

  教学过程

  第一课时

  一、引入新课

  1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。

  2.生活中哪些物体上也有三角形呢?让学生说一说。

  房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……

  3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。

  4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)

  二、新课学习

  1.发现三角形的特征。

  请你画出一个自己喜爱的三角形。三角形有几个顶点、几条边、几个角?

  让学生在自己画的三角形上尝试标出边、角、顶点。

  教师根据学生的汇报板书,标出三角形各部分的名称。

  2.概括三角形的定义。

  大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。请学生对照上面的说法,议一议:下面的图形是不是三角形?

  讨论:对于“三角形”怎样说更准确?

  阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?**学生在讨论中理解“三条线段”“围成”。

  教师用准备好的三条线段的教具在黑板上摆放帮助理解关键词:

  三条线段、围、相邻两个端点相连。

  学生发现:只有具备了这三个条件才能准确无误地围成三角形。

  3.认识三角形的底和高。

  出示练习纸:三角形屋顶的房子和斜拉桥。

  你能测量出三角形房顶和斜拉桥的高度吗?

  学生在练习纸上操作。反馈:你是怎么测量的?

  将三角形房顶下面的边做底,房顶做顶点,过顶点作底边上的垂线就是房顶的高。

  师带领学生一起回顾作高的方法,首先强调底和高的概念:

  从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

  明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?

  出示教材第81页上的三角形。这是三角形的一组底和高吗?画出其他的底和高,画后**:三角形有共几条高?

  出示直角三角形(一条直角边作底),你能画出这条底边上的高吗?

  学生试画,画后发现高是另一条直角边。出示另两条底边,学生在答题纸上画出对应的高。

  4.用字母表示三角形

  全班这么多同学我们是用什么来区分,不会认错的?(名字)黑板上这么多的三角形怎样很快说出每个三角形呢?

  我们一般用字母来表示。标注A、B、C在顶点,我们叫它三角形ABC。

  如果标注D、E、F在顶点,就叫做三角形DEF。

  5.三角形的稳定性

  (1)提出问题。

  出示教材第81页插图:生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?

  (2)实验解疑。

  学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

  实验结果:三角形具有稳定性。

  请学生举出生活中应用三角形稳定性的例子。

  三、巩固练习

  指导学生完成练习十四1、2、3题。

  四、课堂总结

  这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?

  第二课时

  一、引入新课

  1.出示:课本82页例3情境图。

  三角形教案

  (1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?

  (2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)

  教师出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?

  2.大家都认为走中间这条路最近,这是什么原因呢?

  请大家看:连接小明家、商店、学校三地,近似一个什么图形?

  连接小明家、邮局、学校三地,同样也近似一个什么图形?

  大胆猜想:那走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?

  操作交流:请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。

  学生得出:的确有“两边的和大于第三边”这样的关系。

  猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。我们来做个实验。

  二、探究

  1.实验l:用三根小棒摆一个三角形。

  在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。

  2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

  请不能摆成三角形的同学,说出不能摆成三角形的三根小棒的长度。

  任意抽出三组,请学生试一下,看是否摆不成。

  再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。学生汇报。

  我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的三条边又有什么关系?

  (1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。

  (2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?

  大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。

  (3)三角形任意两边的和大于第三边。

  三、应用

  1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。(学生说说)

  2.请学生**完成82页例题中三道题,说说能否拼成三角形。

  我们是否要把三条线段中的每两条线段都相加后才能作出判断?

  思考一下:有没有更快捷的方法?

  (用较小的两条线段的和与第三条线段的关系来检验。)

  做练习十四第四题,利用快捷方式判断。你能用下图中的三条线段组成三角形吗?有什么办法?

  3.有两根长度分别为2cm和5cm的木棒。

  (1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?

  (2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?

  (3)要能摆成三角形,第三边能用的木棒的长度范围是多少?

  四、课堂总结

  在这节课里,你有什么收获?学会了什么知识?是怎样学习的?

  第三课时

  一、引入新课

  1.引导学生回顾锐角、直角和钝角的定义。

  大于0小于90的角,叫做锐角;

  等于90"的角,叫做直角;

  大于90,小于180的角,叫做钝角。

  2.让学生分别画出满足下列条件的三角形。

  (1)画一个有一个角是锐角的三角形;

  (2)画一个有二个角是锐角的三角形;

  (3)画一个有三个角是锐角的三角形。

  3.给学生足够的时间,教师可巡视班级,观察学生的学习情况。

  4.一段时间后,让同桌的学生相互检查,验证所画的三角形是否满足要求。

  5.肯定学生的积极表现,进一步指出:大家所画的三角形各不相同,由此我们可以知道三角形的种类很多,怎样对这些不同种类的三角形进行分类呢?本节课我们就来探讨这个问题。

  二、新课学习

  (一)从角的方面给三角形分类

  1.多**展示三个图形,请学生观察。

  2.提示学生先从角的方面人手,让学生观察上述三个三角形各内角,可以让学生先目测三角形内角大小,然后用量角器测量三角形内角大小。**:这些角分别属于锐角、直角、钝角中的哪一类?

  3.**学生进行分组讨论。讨论的主题是:如何对三角形进行分类。教师可参与到学生的讨论中,及时了解学生的想法和状态,教师可作适当提示。

  4.一段时间后,请各组派**发言,介绍本组的讨论-情况。学生可能想到将三角形所含锐角个数分成三类,也可能想到将三角形分成锐角三角形,直角三角形,钝角三角形。

  5.师生共同分析讨论,指出按三角形所含锐角的个数分类是不合理的,因为只含一个锐角的三角形是不存在的。

  6.教师指出按照如下的分类是合理的,多**展示:

  文本框:三个角都是锐角的三角形叫做锐角三角形;#13;#10;有一个角是直角的三角形叫做直角三角形;#13;#10;有一个角是钝角的三角形叫做钝角三角形。#13;#10;

  7.指出已有图中,哪个是锐角三角形,哪个是直角三角形,哪个是钝角三角形。让学生任意画一个三角形,总可以将它归为上述三类三角形中的一类。因此,一个三角形要么是锐角三角形,要么是直角三角形,要么是钝角三角形。

  多**展示下图:

  (二)从边的方面给三角形分类

  1.多**展示三个图形,请学生观察。

  2.提示学生从边的方面考虑,可让学生自己或和同桌合作剪出如上的三角形纸片。

  3.教师可巡视班级,**学生的活动情况,随时给予学生指导。

  4.请学生分别用直尺和量角器测出上述三个三角形的三条边的长度及各个角的度数。

  5.学生发现其中一个三角形的三条边相等,三个角的度数都是60°。也有三角形有两条边相等,两个角相等;另一个三角形的三条边和三个角互不相等。

  6.给出等腰三角形和等边三角形的定义。多**展示:

  文本框:有两条边相等的三角形,叫做等腰三角形;#13;#10;三条边都相等的三角形,叫做等边三角形。#13;#10;

  7.展示等腰三角形和等边三角形课件,讲解等腰三角形顶角、底角、腰和底的概念。

  8.师生共同分析等腰三角形和等边三角形的性质。

  性质l:等腰三角形的两腰相等,两底角相等。(板书)

  性质2:等边三角形的三条边相等,三个角相等并且都是60°。(板书)

  9.请学生列举生活中等边三角形和等腰三角形的例子,体会数学与现实的广泛联系。

  三、课堂总结

  引导学生回顾本节课的主要内容:三角形的分类。

  从角的角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;

  从边的角度,三角形可以分为一般三角形、等腰三角形、等边三角形。

  第四课时

  一、引入新课

  1.三角形按角的不同可以分成哪几类?

  2.一个*角是多少度?1个*角等于几个直角?

  3.如图,已知∠1=35°,∠2=75°,求∠3的'度数。

  二、新课学习

  1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

  2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

  3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

  4.指名学生汇报各组度量和计算的结果。你有什么发现?

  5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

  6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

  提示学生,可以把三个内角拼成一个角,就只需测量一次了。

  7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

  8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

  9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

  10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)

  11.老师板书结论:三角形的内角和是180°。

  12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

  13.出示教材85页做一做。让学生试做。

  14.指名汇报怎样列式计算的。两种方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°-(140°+25°)=15°

  三、巩固练习

  1.88页第9题

  这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?**完成,集体订正。

  直角三角形中的一个锐角还可以怎样算?

  2.88页第10题

  ①等腰三角形有什么特点?(两底角相等)

  ②列式计算180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88页第10题

  ①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

  ②一个三角形的内角和是180°,两个三角形呢?

  四、课堂总结

  通过这节课的学习你有什么收获?

  生活中的三角形物品

  三角形教案三角形教案

  三角形教案三角形教案

  雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。

三角形教案2

  活动内容:小鱼游(认识三角形)

  活动目标:

  1、知道三角形的主要特征,即三角形有三条边三个角。

  2、根据三角形的特征在图中找出形状与三角形相似的小鱼。

  3、乐意动手操作,提高幼儿的观察力和空间想象力。

  活动重点、难点:

  认识三角形的主要特征

  知道三角形的主要特征是三角形由三条边和三个角组成。

  活动准备:

  三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木活动过程:

  1.故事导入:小黄兔过生日

  师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。

  2、观察小黄兔的出行路线

  请小朋友将路线用线连起来,观察是什么图形(三角形)3、引导幼儿观察比较图形,幼儿每人一个三角形。

  (1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。

  (2)教师小结:三角形有三条边,三个角组成。

  三角形的特征:有三条边,三个角4、引导幼儿动手操作

  幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。

  5、复习三角形的特征

  (1)结合图形宝宝找朋友,让幼儿从众多几何卡片中找出三角形。并一一出示三角形,说说为什么?

  (2)观察图形拼图,找出三角形,数一数用了几个三角形?(3)请幼儿在周围环境中找出三角形物品。

  (4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。

  活动延伸:

  让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。

三角形教案3

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习行为;

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式:(略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全**的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1)讲解例1。学生分析完成,教师注重完成后的点评。

  例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1=

  只要证什么?(3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)


高中数学解三角形知识点 (菁选2篇)(扩展8)

——全等三角形的知识点总结3篇

全等三角形的知识点总结1

  1、三组对应边分别相等的两个三角形全等(简称SSS或边边边),这一条也说明了三角形具有稳定性的原因。

  2、有两边及其夹角对应相等的两个三角形全等(SAS或边角边)。

  3、有两角及其夹边对应相等的两个三角形全等(ASA或角边角)。

  由3可推到

  4、有两角及其一角的对边对应相等的两个三角形全等(AAS或角角边)

  5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或斜边,直角边) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

  注意:在全等的`判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。 A是英文角的缩写(angle),S是英文边的缩写(side)。

  H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。

  6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

全等三角形的知识点总结2

  三角形全等的条件:

  1、全等三角形的对应角相等。

  2、全等三角形的对应边相等

  3、全等三角形的对应顶点相等。

  4、全等三角形的对应边上的高对应相等。

  5、全等三角形的对应角*分线相等。

  6、全等三角形的对应中线相等。

  7、全等三角形面积相等。

  8、全等三角形周长相等。

  9、全等三角形可以完全重合。

  三角形全等的方法:

  1、三边对应相等的两个三角形全等。(SSS)

  2、两边和它们的夹角对应相等的两个三角形全等。(SAS)

  3、两角和它们的夹边对应相等的两个三角形全等。(ASA)

  4、有两角及其一角的对边对应相等的两个三角形全等(AAS)

  5、斜边和一条直角边对应相等的两个直角三角形全等。(HL)

全等三角形的知识点总结3

  要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:

  S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。

  S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。

  A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。

  A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。

  R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。

  但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:

  A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。

  A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。


高中数学解三角形知识点 (菁选2篇)(扩展9)

——相似三角形的知识点总结

相似三角形的知识点总结1

  定义

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  比值与比的概念

  比值是一个具体的数字如:AB/EF=2

  而比不是一个具体的数字如:AB/EF=2:1判定方法

  证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

  方法一(预备定理)

  *行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要*行线与线段成比例的证明)

  方法二

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  方法三

  如果两个三角形的两组对应边成比例,并且相应的夹角相等,

  那么这两个三角形相似

  方法四

  如果两个三角形的三组对应边成比例,那么这两个三角形相似

  方法五(定义)

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  三个基本型

  Z型 A型 反A型

  方法六

  两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形

  1、两个全等的.三角形

  (全等三角形是特殊的相似三角形,相似比为1:1)

  2、两个等腰三角形

  (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)

  3、两个等边三角形

  (两个等边三角形,三角都是60度,且边边相等,所以相似)

  4、直角三角形中由斜边的高形成的三个三角形(母子三角形)

  图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除