数学解题经验方法

数学解题经验方法1

  中学数学中常见的数学思想有:函数与方程、数形结合、分类讨论、 转化与化归的思想。这典型的四类数学思想对初中数学问题的解决有着重要的思维指导作用。

  1。 函数与方程的思想:函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

  2。 数形结合的思想:数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

  3。 分类讨论的思想

  分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

  解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如 实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论 ;类型 2 :由数**算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

  如分类讨论的案例: 在一张长为 9 厘米 ,宽为 8 厘米 的矩形纸板上,剪下一个腰长为 5 厘米 的等腰三角形(要求等腰三角形的一个顶点与矩形的一个顶点重合,其余两个顶点在矩形的边上),请计算剪下的等腰三角形的面积?

  分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的`分类标准; ③ 按所分类别进行讨论; ④ 归纳小结、综合得出结论。注意动态问题一定要先画动态图。

  4 .转化与化归的思想

  转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

  但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

  常见的转化方法有: ?

  ( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题 。

  ( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 。 ?( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 。 ?( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 。 ?( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 。

  ( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 。

  ( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径


数学解题经验方法扩展阅读


数学解题经验方法(扩展1)

——小学数学解题方法

小学数学解题方法1

  形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展**的思维过程。

  形象思维的主要**是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

  1、实物演示法

  利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

  这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

  鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

  4、探索法

  按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的`、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

  第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或*的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷**度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

  第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

  第三,**探究与合作探究结合。**,有**的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

  5、观察法

  通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

  小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

  如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

  “观察”的要求:

  第一、观察要细致、准确。

  第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

  6、典型法

  针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、*均数等。

  运用典型法必须注意:

  (1)要掌握典型材料的关键及规律。

  (2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。

  (3)典型和技巧相联系。

  7、放缩法

  通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

  思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

  思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。

  放缩法有时运用在估算和验算上。

  8、验证法

  你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

  验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

  (1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

  (2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

  (3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

  按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

  (4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。


数学解题经验方法(扩展2)

——数学解题方法初中

数学解题方法初中1

如何提高解题的正确率

很多同学考试发下卷子后,总是难免要一声叹息或者几声叹息。“这个问题我怎么没想到?!”,“这么简单的计算我怎么居然算错了?!”,“我怎么草稿纸上算对了,卷子上却写错了?!”……

很多同学都把正确率的欠缺归结为考试时自己的不小心、粗心,并且还在心里有意无意地把因为这种原因被扣掉的分加上去,心里想着我的水*应该是多少多少分。如果你常常这样做,那就大错特错了。因为,你会发现,等到下次考试,你努力地想要细心仔细地做每一道题时,发下卷子,还是会出现本该会做的题做错了的情况。如果是这样,那就表示,你还存在一个学**的缺点或弱点:正确率没有保证!这不是仅仅靠考试时的极力小心所能解决的。

下面我们就对解题错误率高的几种情况进行分析。

现象一:一听就会,一做就错,总是在看到答案后恍然大悟。

很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等看到答案才大喊一声,哇,原来是这样的啊。于是再做,发现还是不能**的把题目完整的做出来,于是再看答案,再做。。。。。。

原因:原来在做题目时没有真正理解题目的解法,只能跟着老师的思路把题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得解法了。所以,“背题”是万万要不得的,考试的题目千千万,背的过来么?

解决方法:在做完一道题目后,两个同学结成小组,互相讲解给对方听,让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。家长可以在一两周之后把这道题目的数据换一下,再让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,还能达到举一反三的效果。

现象二:会做,但总是粗心,不是抄错题就是算错数

很多家长都反应说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那四分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这道题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。其实,作为有多年教学经验的老师,我们告诉各位家长,会做做不对才是***的。

原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。第二个原因就是对知识掌握的不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。

解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。但是也不能盲目的去做题,有数量不等于有质量,会做的题目就是做上一千道也没有进步。老师和家长要引导孩子挑战自己不会的题目,只有不断地去挑战才能不断的进步。

现象三:心态不端正,觉得做不对无所谓,会做就行了

很多学生都觉得只要会做就行了,*时算不对,到考试时***会高度集中,就能算对了。其实这种看法是不对的,

原因:学生学习的目的除了要掌握知识,掌握解决问题的方法,还要在学习的过程中养成良好的学**惯,良好的学**惯是成功的一大法宝。而在学习中心态不端正,长此以往,会形成浮躁的性格,这是学习的大忌。

解决方法:端正态度,养成良好的学**惯。准备一个错题本,把每天自己做错的题目记下来,要将因为不会而做错和因为粗心做错的题目分开记,每周都将错题本上的该周做错的题目再做一遍,就会对自己犯过的错误印象深刻,就能避免再犯同样的错误。

总之,要想提高解题的准确率,就要本着端正的学习态度,去做一定量的有针对性的题目,在做题时认真思考,要全神贯注,心无旁骛。真正的去理解解题方法,做完一道题目之后当堂回顾,把解题思路复述出来,并将做错的题抄在错题本上,经过一段时间的努力,一定能将解题的错误率降低,并养成良好的学**惯。所以,我们经常说,学数学很容易,秘诀就是:会做的做对,错过的不要再错!


数学解题经验方法(扩展3)

——数学解题思维方法

数学解题思维方法1

  在小学数学解题方法中,运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

  抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

  形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

  辩证思维能力:联系、发展变化、对立**律、质量互变律、否定之否定律。

  小学数学要培养学生初步的抽象思维能力,重点突出在:

  (1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

  (2)思维方法上,应该学会有条有理,有根有据地思考。

  (3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

  (4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

  1、对照法

  如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

  这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

  例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

  对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的*均数就是这三个连续自然数的中间那个数。

  例2:判断题:能被2除尽的数一定是偶数。

  这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

  2、公式法

  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

  例3:计算59×37+12×59+59

  59×37+12×59+59

  =59×(37+12+1)…………运用乘法分配律

  =59×50…………运用加法计算法则

  =(60-1)×50…………运用数的组成规则

  =60×50-1×50…………运用乘法分配律

  =3000-50…………运用乘法计算法则

  =2950…………运用减法计算法则

  3、比较法

  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

  例4:填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

  这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

  例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

  这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

  找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

  找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

  4、分类法

  根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

  分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

  例6:自然数按约数的个数来分,可分成几类?

  答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

  5、分析法

  把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

  依据:总体都是由部分构成的。

  思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂**,再分别对照要求,从而理顺解决问题的思路。

  也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

  例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问*均每天超过计划多少件?

  思路:要求*均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉, 还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

  6、综合法

  把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

  用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

  例8:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

  思路:11的倍数同时小于50的偶数有22和44。

  两个数都是质数,而和是偶数,显然这两个质数中没有2。

  和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?

  和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?

  这就是综合法的思路。

  7、方程法

  用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知 数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

  例9:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。

  例10:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

  这两题用方程解就比较容易。

  8、参数法

  用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

  例11:汽车爬山,上山时*均每小时行15千米,下山时*均每小时行驶10千米,问汽车的*均速度是每小时多少千米?

  上下山的*均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。

  例12:一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?

  其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

  9、排除法

  排除对立的结果叫做排除法。

  排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

  例13:为什么说除2外,所有质数都是奇数?

  这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的.约 数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

  例14:判断题:(1)同一*面上两条直线不*行,就一定相交。(错)

  (2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)

  10、特例法

  对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。

  例15:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

  可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

  例16:正方形的面积和边长成正比例吗?

  如果正方形的边长为a,面积为s。那么,s:a=a(比值不定)

  所以,正方形的面积和边长不成正比例。

  11、化归法

  通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

  例17:某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

  这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

  例18:超市运来马铃薯、***、豇豆三种蔬菜,马铃薯占25%,***和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来***多少千克?

  需要把“***和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。


数学解题经验方法(扩展4)

——初中物理实验方法3篇

初中物理实验方法1

  一 **变量法

  1 研究蒸发快慢与液体温度、液体表面积和液体上方空气流动速度的关系。

  2 研究弦乐器的音调与弦的松紧、长短和粗细的关系。

  3 研究压力的作用效果与压力和受力面积的关系。

  4 研究液体的压强与液体密度和深度的关系。

  5 研究滑动摩擦力与压力和接触面粗糙程度的关系。

  6 研究物体的动能与质量和速度的关系。

  7 研究物体的势能与质量和高度的关系。

  8 研究导体电阻的大小与导体长度材料横截面积的关系。

  9 研究导体中电流与导体两端电压、导体电阻的关系。

  10研究电流产生的热量与导体中电流、电阻和通电时间的关系。

  11研究电磁铁的磁性与线圈匝数和电流大小的关系。

  二 图像法

  1 用温度时间图像理解融化、凝固、沸腾现象。

  2 电流、电压、图像理解欧姆定律I=U/R、电功率 P=UI

  3 正比、反比函数图象巩固密度ρ=m/V、重力G=mg、速度v=s/t、杠杆*衡F1L1=F2L2

  压强p=F/S p=ρgh 浮力 F=ρ液gV排、 功、热量Q=cm(t2-t1)等公式。

  三 转换法的应用

  1

  2

  3

  4 利用乒乓球的弹跳将音叉的振动放大;利用轻小物体的跳动或振动来证明发声的物体在振动。 用温度计测温度是利用内部液体热胀冷缩改变的体积来反映温度高低。 测量滑动摩擦力时转化成测拉力的大小。 通过研究扩散现象认识看不见摸不着的分子运动。

  5 判断有无电流课通过观察电路中的灯泡是否发光来确定。

  6 磁场看不见、摸不着,可以通过观察小磁针是否转动来判断磁场是否存在。

  7 判断电磁铁磁性强弱时,用电磁铁吸引的大头针的数目来确定。

  8 研究电阻与电热的关系时,电流通过阻值不等的两根电阻丝产生的热量无法直接观测或比较,可通过转换为可看见的现象(气体的膨胀、火柴的点燃等的不同)来推导出那个电阻放热多。

  四 实验推理法

  1 研究真空中能否传声。2 研究阻力对运动的影响。

  3 “在自然界只存在两种电荷 ”这一重要结论也是在实验基础上推理得出来的。

  五 等效替代法

  1 在电路中若干个电阻可以等效为一个合适的电阻,反之亦可;如等效电路、串并联电路的等效电阻,都利用了等效的思维方法。

  2 在研究*面镜成像实验中用两根完全相同的蜡烛其中一根等效另一根的像。

  3 用加热时间来替代物体吸收的热量。

  4 用自行车轮测量跑道的长度,跑道较长,无法直接测量,用滚轮法处理:轮子的周长乘以圈数即为跑道的周长。

  六 类比归纳法的应用

  1 研究电流时类比水流 2 用“水压”类比“电压”

  3 用抽水机类比电源 4 研究做功快慢时与运动快慢进行类比等

  5 用弹簧连接的小球类比分子间的相互作用力

初中物理实验方法2

  巴普洛夫认为:“重要的是科学方法,科学是思想的总结,认识一个科学家的方法远比认识他的成果价值要大。”为培养学生科学探究精神,实践能力和创新意识,帮助学生提高素质,我们在教学中要十分重视科学方法的培养。探究物理实验的科学方法有许多种, 常用的有观察法、比较法、**变量法、等效替代法、转换法、类比法、建立模型法、理想实验、图像法。

  一、观察法。观察法是人们为了认识事物的本质和规律有目的有计划的对自然发生条件下所显现的有关事物进行考察的一种方法,是人们收集获取记载和描述感性材料的常用方法之一,是最基本最直接的研究方法。简单的讲观察法就是看仔细地看。但它和一般的看不同,观察是人的眼睛在大脑的指导下进行有意识的**的感知活动。因此,亦称科学观察。

  实例:水的沸腾:在使用温度计前,应该先观察它的量程,认清它的刻度值。实验过程中要注意观察水沸腾前和沸腾时水中气泡上升过程的两种情况,温度计在沸腾前和沸腾时的示数变化;在学习声音的产生时可让学生观察小纸片在扬声器中的运动状态,观察正在发声的音叉插入水中激起水花,观察悬挂的乒乓球接触发声的音叉时的运动情况,就会发现发出声音的物体都在振动;除此之外还有光的反射规律;光的折射规律;凸透镜成像;滑动摩察力与哪些因素有关等。

  二、比较法。比较法是确定研究对象之间的差异点和共同点的思维过程和方法,各种物理现象和过程都可以通过比较确定它们的差异点和共同点。比较是抽象与概括的前提,通过比较可以建立物理概念总结物理规律。利用比较又可以进行鉴别和测量。因此,比较法是物理现象研究中经常运用的最基本的方法。如,比较蒸发和沸腾的异同点,比较汽油机和柴油机的`异同点,电动机和热机,电压表和电流表的使用

  利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西。实例:象汽车轮船火车飞机它们的发动机各不相同但都是把燃料燃烧时**的内能转化为机械能装置。而汽油机和柴油机虽然都是内燃机但是从它们的构造、吸入的气体、点火方式、使用范围等方面都有不同。再如蒸发与沸腾的比较两者的相同点都是汽化过程。不同点从发生时液体的温度、发生所在的部位及现象都不同。还可以用比较法来研究质量与体积的关系;重力与质量的关系;重力与压力;电功与电功率等。

  三、**变量法。**变量法是指讨论多个物理量的关系时通过**其几个物理不变,只改变其中一个物理量从而转化为多个单一物理量影响某一个物理量的问题的研究方法。这种方法在实验数据的表格上的反映为某两次试验只有一个条件不同,若两次试验结果不同则与该条件有关。否则无关。反之,若要研究的问题是物理量与某一因素是否有关则应只使该因素不同,而其他因素均应相同。

  实例:在研究导体的电阻跟哪些因素有关时,为了研究方便采用**变量法。即每次须挑选两根合适的导线,测出它们的电阻,然后比较,最后得出结论。为了研究导体的电阻与导体长度的关系,应选用材料横截面相同的导线,为了研究导体的电阻与导体材料的关系,应选用长度和横截面相同的导线,为了研究导体的电阻与导体横截面的关系,应选用材料和长度相同的导线。`研究影响力的作用效果的因素;研究液体蒸发快慢的因素;研究液体内部压强;研究动能势能大小与哪些因素有关;研究琴弦发声的音调与弦粗细、松紧、长短的关系;研究物体吸收的热量与物质的种类质量温度的变化的关系;研究电流与电压电阻的关系;研究电功或电热与哪些因素有关;研究通电导体在磁场中受力与哪些因素有关;研究影响感应电流的方向的因素采用此法。

  四、等效替代法。所谓等效替代法是在保证效果相同的前提下,将陌生复杂的问题变换成熟悉简单的模型进行分析和研究的思维方法,它在物理学中有着广泛的应用。

  实例:研究串联并联电路关系时引入总电阻(等效电阻)的概念,在串联电路中把几个电阻串联起来,相当于增加了导体的长度,所以总电阻比任何一个串联电阻都大,把总电阻称为串联电路

  的等效电阻。在并联电路中把几个电阻并联起来,相当于增加了导体的横截面积,所以总电阻比任何一个并联电阻都小,把总电阻称为并联电路的等效电阻;在电路分析中可以把不易分析的复杂电路简化成为较为简单的等效电路;在研究同一直线上的二力的关系时引入合力的概念也是运用了等效替代法。

  五、转换法。物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。初中物理在研究概念规律和实验中多处应用了这种方法。

  实例:物体发生形变或运动状态改变可证明一些物体受到力的作用;马德堡半球实验可证明大气压的存在;雾的出现可以证明空气中含有水蒸气;影子的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;奥斯特实验可证明电流周围存在着磁场;指南针指南北可证明地磁场的存在;扩散现象可证明分子做无规则运动;铅块实验可证明分子间存在着引力;运动的物体能对外做功可证明它具有能等。

  六、类比法。所谓类比就是“触类旁通”“举一反三”实际上是一种从特殊到特殊,从一般到一般的推理,它是根据两个或两类对象之间在某些方面的相同或相似而推出他们在其他方面也可能相同或相似的一种逻辑思维。从而可以帮助我们理解较复杂的实验和较难的物理知识。类比是一种推理方法,不同事物在属性、数学形式及其他量描述上有相同或相似的地方就可以来用类比推理。类比法是提出科学假说做出科学预言的重要途径,物理学发展史上的许多假说是运用类比方法创立的,开普勒也曾经说过:“我们珍惜类比推理胜于任何别的东西”。

  实例:电压与水压;电流与水流;内能与机械能;原子结构与太阳系;水波与电磁波;通信与鸽子传递信件;功率概念与速度概念的形成。在物理学中运用类比方法可以引导学生自己获取知识,有助于提出假说进行推测,有助于提出问题并设想解决问题的方向。类比可激发学生探索的意向,引导学生进行探索使学生成为自觉积极的活动,发展学生的思维能力。

  类比是科学家最常运用的一种思维方法,由这种方法得出的结论虽然不一定可靠,但是,在逻辑中却富有创造性。

  类比的事例很多这就需要*时多留心不断地总结找到比较恰当的事例做类比。

  七、建立模型法。建立模型法是一种高度抽象的理想客体和形态用物理模型,用物理模型可以使抽象的假说理论加以形象化,便于想象和思考研究问题。物理学的发展过程可以说就是一个不断建立物理模型和用新的物理模型代替旧的或不完善的物理模型的过程。

  实例:研究肉眼观察不到的原子结构时,建立原子核式结构模型;研究光现象时用到光线模型;研究磁现象是用到磁感线模型;力的示意图或力的图示是实际物体和作用力的模型;电路图是实物电路的模型;研究发电机的原理和工作过程用挂图及手摇发电机模型;研究内燃机结构和工作原理用挂图及汽油机柴油模型。

  八 理想实验。所谓理想实验又叫“假想实验”“抽象的实验”或“思想上实验”它是人们在思想中塑造的理想过程,是一种逻辑推理的思维过程和理论研究的重要方法。理想实验虽然也叫实验,但它同所说的真实的科学实验是有原则区别的,真实的科学实验是一种实践活动,而理想实验则是一种思维的活动,前者是可以将设计通过物理过程而实现的实验,后者则是由人们在抽象思维中设想出来而实际上无法做到的实验。

  但是,理想实验并不是脱离实际的主观臆想。首先,理想实验是以实践为基础的,所谓的理想实验就是在真实的科学实验的基础上,抓住主要矛盾忽略次要矛盾对实际过程做出更深入一层的抽象分析。其次,理想实验的推广过程是以一定的逻辑法则为根据的,而这些逻辑法则都是从长期的社会实践中总结出来的并为实践所证实了的。

  理想实验在自然科学的理想研究中有着重要的作用。但是,理想实验的方法也有其一定的局限性,理想实验只是一种逻辑推理的思维过程,它的作用只限于逻辑上的证明与反驳,而不能用来作为检验正确与否的标准。相反,由理想实验所得出的任何推论都必然由观察实验的结果来检验。例

  如,牛顿第一定律就是在实验的基础上经过科学推理得出来的。

  十 图像法。图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观。由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用。在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处。如:在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的。它形象直观地表示了物质温度的变化情况,学生在亲历实验自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点了。


数学解题经验方法(扩展5)

——广东高考数学填空题解题方法 (菁选2篇)

广东高考数学填空题解题方法1

  一、直接法

  从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

  二、特殊化法

  当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

  三、数形结合法

  对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

  四、等价转化法

  将问题等价地转化成便于解决的问题,从而得出正确的结果。

  解决恒成立问题通常可以利用分离变量转化为最值的方法求解。

广东高考数学填空题解题方法2

  认真“听”

  认真“听”的习惯。为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

  积极“想”

  积极“想”的习惯。积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

  仔细“审”

  仔细“审”的习惯。审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

  **“做”

  **“做”的习惯。练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的**学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

  善于“问”

  善于“问”的习惯。俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的`交际、表达等方面的能力逐步提高。


数学解题经验方法(扩展6)

——高中数学解题方法及技巧 (菁选2篇)

高中数学解题方法及技巧1

  思路思想提炼法

  催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。

  典型题型精熟法

  抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学**也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。

  逐步深入纠错法

  巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛**少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

  换元法

  “换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答。

  在解题过程中,把题中某一式子如f(x),作为新的变量y或者把题中某一变量如x,用新变量t的式子如g(t)替换,即通过令f(x)=y或x=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法。

  用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(x)=y或x=g(t)。就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧。

  例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1)全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数,使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系。只有全面考虑以上原则,才能谋取恰当的三角代换。

  换元法是一种重要的数学方法,在多项式的因式分解,代数式的化简计算,恒等式、条件等式或不等式的证明,方程、方程组、不等式、不等式组或混合组的求解,函数表达式、定义域、值域或最值的推求,以及解析几何中的坐标替换,普通方程与参数方程、极坐标方程的互化等问题中,都有着广泛的应用。

高中数学解题方法及技巧2

  吃透考纲把握动向

  在高考数学复习中,很重要的一点是要有针对性,提高效率,避免做无用功。在对数学基本的知识点融会贯通的基础上,认真研究高考数学考纲,不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。*时多关注**高考试题的变化及其相应的评价报告,多层次、多方位地了解高考信息,使复习有的放矢,事半功倍。

  围绕课本注重基础

  从近几年的高考数学卷来看,都很重视基础知识,突出教材的考查功能。试题至少有一半以上来源于教材,强调对通性通法的考查。针对这一情况,提醒考生,在剩下的不多的复习时间里,必须注意回归课本,围绕课本回忆和梳理知识点,对典型问题进行分析、解构、熟悉。只有透彻理解数学课本例题、习题所涵盖的知识重点和解题方法,才能以不变应万变。

  针对专题攻克板块

  高考数学复习中,应加强各知识板块的综合。对于重点知识的交叉点和结合点,进行必要的针对性专题复习。例如,函数是整个中学数学中非常重要的部分,可以以它为主干,与数学不等式、方程、相似形等结合起来,进行综合复习。

  规范训练提高效率

  学生常常把计算错误简单地归结为粗心,其实不然,这有可能是基础不牢固,也有可能是技巧不熟练。小编建议考生,在高考数学复习阶段要注重培养自己在解题中的运算能力,每次练习做到熟练、准确、简捷、迅速。经验表明,每次作业、考试后建立的错题本,是学生检查和总结自身薄弱环节的有效方式。在高考数学复习阶段,考生需要的就是一些行之有效的方法,帮助他们更合理有效地利用时间,集中精力,提高效率。

  有计划才有主动

  从一个学生的计划上就可以体现出你能抓住的`是西瓜还是芝麻,这是对学生条理性的检验。有了一个量身定制、有的放矢的高考数学复习计划,才真正抓住了主动权。

  注重双基强化课本

  正如前面提到的,近几年的高考数学试卷体现了全面考察基础知识、重点知识,注重通性通法的特点。这就要求同学们必须注重“双基”训练,重点要求以课本知识为主,对整个学期学过的知识熟记、归纳、总结,并参照数学课后习题反复思考、加深理解,做到熟练掌握,并灵活运用。


数学解题经验方法(扩展7)

——数学解题的技巧与方法

数学解题的技巧与方法1

  第一个技巧,看清审题与解题

  有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。

  第二个技巧,利用好快与准

  只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是*时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水*是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

  第三种解题技巧:“会做”与“得分”的关系

  要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中不希望我们的同学也犯这样的错误!

  第四种解题技巧:难题与容易题的关系

  一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。但是,**来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的“台阶”,因为看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

  【总结】数学解题技巧就为大家介绍到这儿了,在高三阶段,大家也应该要多了解一些高考备考知识,为高考而做准备。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除