向量法证明不等式

今天小编就为大家分享一篇向量法证明不等式,具有很好的参考价值,希望对大家有所帮助

客户对产品的价位时非常敏感的。在明年的销售工作中我认为产品的价格做一下适当的浮动,


高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变. 若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n=2,3时的情况.
设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)
规定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.
(注:a·b可记为(a,b),表示两向量的内积),有
由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.
一、利用向量模的和与和向量的模的不等式(即
例1设a,b,c∈R+,求证:(a+b+c)≤++≤.
证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),
则由
综上,原不等式成立.
点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.
作单位向量j⊥AC
j(AC+CB)=jAB
jAC+jCB=jAB
jCB=jAB
|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)
即|CB|sinC=|AB|sinA
a/sinA=c/sinC
其余边同理
在三角形ABC平面上做一单位向量i,i⊥BC,因为 BA+AC+CB=0恒成立,两边乘以i得 i*BA+i*AC=0① 根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理 i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得 csinB-bsinC=0 所以b/sinB=c/sinC 类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB, 所以a/sinA=b/sinB=c/sinC
步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除