用三段论方法证明
小前提:函数x-1在[1,∞)上是增函数 大前提:根号内的x在[0,∞)上是增函数 结论:函数f(x)=根号x-1在[1,∞)上是增函数 厉害吧 哈哈
2
(1)如果有一个前提是否定判断,则大前提为全称判断;(2)如果大前提是肯定判断,则小前提为全称判断;(3)如果小前提是肯定判断,则结论为特称判断;(4)任何一个前提都不能是特称否定判断;(5)结论不能是全称肯定判断;麻烦哪位大虾帮小弟证明下这五点可以吗
3
四格规则:中项在大前提中作谓项,在小前提中作主项。 1、前提之一否定,大前提全称。 2、大前提肯定,则小前提全称。 3、小前提肯定,则结论特称。 4、前提中不得有特称否定判断 。 5、结论不能是全称肯定判断 。 证明1: 如果两个前提中有一个是否定的,结论也必然是否定的(前提之一否定,结论是否定的); 结论否定,则大项周延(否定判断的谓项周延); 大项在第四格中处于前提的主项,只有全称时主项周延; 所以,大前提必须全称。 证明2: 如果大前提肯定,在大前提中中项不周延(肯定判断谓项不周延); 只有小前提全称,中项才周延一次(全称判断主项周延); 三段论要求中项至少周延一次; 所以,大前提肯定,则小前提全称。 证明3: 如果小前提肯定,小项在前提中不周延(肯定判断谓项不周延); 如果结论全称,则在结论中小项周延,违反了在前提中不周延的项在结论中也不得周延规则; 所以:小前提肯定,则结论特称。 证明4: 如果大前提否定,结论必要否定(前提之一否定,结论是否定的); 则大项在结论中周延(否定判断的谓项周延); 如果大前提特称,大项在前提中不周延(特称判断的主项不周延); 这样,就违反了在前提中不周延的项在结论中也不得周延规则; 因此,大前提不能是特称否定。 如果小前提否定,大前提必肯定(两个否定的前提推不出结论); 则中项在大前提中不周延(肯定判断谓项不周延); 小前提否定,中项在小前提中也不周延(特称判断的主项不周延); 三段论规则要求中项在前提中至少周延一次; 因此,小前提不能是特称否定。 所以,前提中不得有特称否定判断。 证明5: 如果结论是全称肯定判断,则小项在结论中周延(全称判断主项周延); 则大项在结论中不周延(肯定判断谓项不周延); 则小前提必否定才使小项在前提中周延(在前提中不周延的项在结论中也不得周延); 但如果小前提否定,结论必然否定(前提之一否定,结论是否定的) 与结论为肯定判断矛盾; 所以,结论不能是全称肯定判断。
4
在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。三段论 (syllogism)是传统逻辑中的一类主要推理。又称直言三段论。古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。
形式逻辑 间接推理的基本形式之一,由大前提和小前提推出结论。如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论) 。这称为三段论法或三段论式 。
三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除