函数极限的证明

今天小编就为大家分享一篇函数极限的证明,具有很好的参考价值,希望对大家有所帮助

鄂尔多斯市的房产开发及玺建祥房产开发给我们带来了无限的发展前景,我们要做好市场调查,总结上半年的工作经验,


(一)时函数的极限:
以 时 和 为例引入.
介绍符号: 的意义, 的直观意义.
定义 ( 和 . )
几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.
例1验证 例2验证 例3验证 证 ……
(二)时函数的极限:
由 考虑 时的极限引入.
定义函数极限的“ ”定义.
几何意义.
用定义验证函数极限的基本思路.
例4 验证 例5 验证 例6验证 证 由 =
为使 需有 为使 需有 于是, 倘限制 , 就有
例7验证 例8验证 ( 类似有 (三)单侧极限:
1.定义:单侧极限的定义及记法.
几何意义: 介绍半邻域 然后介绍 等的几何意义.
例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:
Th类似有: 例10证明: 极限 不存在.
例11设函数 在点 的某邻域内单调. 若 存在, 则有
= §2 函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等

5月22号——5月25号,我们除了值班人员外,其他员工全部出动到C区,很好地完成了集团公司交给我们的清扫售楼部卫生,


教学重点:函数极限的性质及其计算

从你呱呱坠地时,上天就注定你是属于我的,虽然这个特别的日子不能和你在一起,但我们会一起庆祝你的60大寿


教学难点:函数极限性质证明及其应用

有一次,我突然发现妈妈的背有点弯,腰板也挺不直了,晚上妈妈换衣服时,看到妈妈的腰上贴了好几个药膏,这时我明白了,


教学方法:讲练结合

我没有五彩的鲜花,没有浪漫的诗句,没有贵重的礼物,没有兴奋的惊喜,只有轻轻的祝福,祝你生日快乐!


一、组织教学:
我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.
二、讲授新课:
(一)函数极限的性质:以下性质均以定理形式给出.
1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性( 不等式性质 ):
Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )
註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.
5.迫敛性:
6.四则运算性质:( 只证“+”和“ ”)
(二)利用极限性质求极限: 已证明过以下几个极限:
(注意前四个极限中极限就是函数值 )
这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.
利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.
例1( 利用极限 和 )
例2例3註:关于 的有理分式当 时的极限.
例4 [ 利用公式 ]
例5例6例7

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除