圆的面积课后教学反思

第1篇:圆的面积课后教学反思

《圆的面积》中的圆是小学阶段最后认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的能力。

课刚开始,我与学生们一起复习了前面学习的圆的周长公式,为下面计算圆的面积公式做好了铺垫。先让学生各自述说自己对于圆的面积的一些认识,再提出一个难题:“你能想办法求出圆的面积么?”面对这一问题,大部分学生一筹莫展。个别同学经过预习,对本课所采用的方法有了一定的了解,表达了利用剪一剪和拼一拼的方法进行研究的想法。在这时,提出“以前有没有这样剪一剪拼一拼的方法?”学生回忆起以前学平行四边形面积时也是沿平行四边形的高剪下一三角形,再通过平移补到缺口的方法将平行四边形转化为长方形。从中得出了转化是一种很巧妙的方法,可以在动手*作的过程中用到。然后同学们小组合作,动手*作,孩子们通过*作后,发现将圆等份后可以将圆转化成一个近似的平行四边形。如果将圆等分的等份越多,那转化的图形就越接行四边形。可以根据长方形或平行四边形的面积计算公式推导出圆的面积计算公式。根据学生的回答,利用课件的演示,直观的向他们展示了转化过程以及利用极限的方法变成

长方形后其长、宽与圆的周长、半径之间的关系。最后在学生们大胆猜测,积极求*之下推导出了圆的面积计算公式。通过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。

为了本节课的教学,自己经过了较长时间的精心准备,因此,从整个教学设计来看还做得较为可行,重点把握的比较准确。但是在具体实施教学时还是存在着几点不足:

1、课堂语言评价存在着较大的不足。平时比较不怎么注意这方面的培养,导致课堂气氛没有很好的被调动起来。因此,希望能通过平时课堂教学的磨练逐步改善这个缺点。

2、圆的面积公式推导及实践*作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还不过深入。如果当时在引导上能及时考虑到这一点,并给予更具技巧*的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。

这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,希望能在今后的教学中取长补短,积累经验,取得更大的进步。

第2篇:圆柱侧面积与表面积一课的教学反思

苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。

一、创设问题的情景

在新授时我打破以前拿出一个圆柱放在桌上直接进行侧面积公式推导模式,而是提供给学生两个空心纸圆柱,一个矮胖型,一个瘦高型,鼓励学生大胆猜想,“谁的侧面积大一些”。学生们看到两个圆柱表现得非常积极,兴趣十分浓厚,思维也很活跃。有的说:“我认为矮胖型侧面积较大。”我就追问他为什么?他说:“矮胖型圆柱比较粗,我认为圆柱侧面积与它的粗细程度有关。”有的说:“我认为瘦高型的圆柱侧面积较大。”我也追问他为什么?他说:“瘦高型圆柱比较高,我认为圆柱侧面积与他的高低有关。”当然还有一部分认为它们的侧面积相等或无法判断的,因为他们认为圆柱的侧面积与圆柱的粗细和高低都有关系,甚至还把小的那个圆柱放在大圆柱内,再把大圆柱底面捏起来让我看。对子上面的回答我都没有给予直接肯定或否定,关键是我认为通过学生们对两个圆柱的观察都已认识到了非常重要的两点,即圆柱侧面积大小与圆柱粗细和高低有关。通过这样创设情景设疑大大激发了学生的直觉思维,而不是像以前对照公式直接去讲解。与此同时我再设一疑,这两个圆柱到底谁的侧面积大,你们能否通过动手来*呢?

二、动手*作,实践领悟

在允许学生想一切办法*自己的猜测时,学生们再一次表现了良好的学习兴趣,个个动手动脑,有的沿高直往下剪,把圆柱侧面剪开得到了一个长方形的展开图;有的斜着剪下来得到一个平行四边形;有的剪成各种不规则图形;还有的剪成若干个三角形,梯形等等,体现了学生思维的多样*,差异*。也使学生一下子明白其实求圆柱的侧面积完全可以转化为我们以前学过的图形。既然圆柱的侧面积可以转化成这么多以前学过的图形,那你们觉得把它转化成哪一种来求更为合理呢?

三、讨论交流,合作探索

因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、*质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。

四、实践应用,发展能力

在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生*进行解答。侧面积会求了又如何求圆柱的表面积呢?*解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。

这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手*作能力与创新精神。

第3篇:圆的面积数学教学反思

1、圆的面积是在圆的周长的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

2、渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

3、在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验*作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除