高中数学《点到直线的距离》说课稿
第1篇:高中数学《点到直线的距离》说课稿范文
1.教材分析
1?-1教学内容及包含的知识点
(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容
(2)包含知识点:点到直线的距离公式和两平行线的距离公式
1-2教材所处地位、作用和前后联系
本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定*刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求
掌握点到直线的距离公式
1-4高考大纲要求及在高考中的显示形式
掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据
教学目标
(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究*思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩*法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:
中华*共和国教育部制定的《全日制普通高级中学数学教学大纲》(2002年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(2004年)
1-6教学重点、难点、关键
(1)重点:点到直线的距离公式
确定依据:由本节在教材中的地位确定
(2)难点:点到直线的距离公式的推导
确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体*得不到体现。
分析“尝试*题组”解题思路可突破难点
(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
2.教法
2-1发现法:本节课为了培养学生探究*思维目标,在教学过程中,使老师的主导*和学生的主体*有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试*题组”,引导、启发学生分析、发现、比较、论*等,从而形成完整的数学模型。
确定依据:
(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进*原则。
(2)事物之间相互联系,相互转化的辩*法思想。
2-2教具:多媒体和黑板等传统教具
3.学法
3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论*后得到一般*结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
3-2学情:
(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定*认识和对两线相交的定量认识,为本节推*公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。
(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。
(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。
3-3学具:直尺、三角板
4.教学评价
学生完成反思*学习报告,书写要求:
(1)整理知识结构
(2)总结所学到的基本知识,技能和数学思想方法
(3)总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因
(4)谈谈你对老师教法的建议和要求。
作用:
(1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2)报告的写作本身就是一种创造*活动。
(3)及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿*教学。
5.板书设计
(略)
6.教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
第2篇:高中数学《点到直线的距离》说课稿
1.教材分析
1-1教学内容及包含的知识点
(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容
(2)包含知识点:点到直线的距离公式和两平行线的距离公式
1-2教材所处地位、作用和前后联系
本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定*刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求
掌握点到直线的距离公式
1-4高考大纲要求及在高考中的显示形式
掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据
教学目标
(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究*思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩*法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:
中华*共和国教育部制定的《全日制普通高级中学数学教学大纲》(2002年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(2004年)
1-6教学重点、难点、关键
(1)重点:点到直线的距离公式
确定依据:由本节在教材中的地位确定
(2)难点:点到直线的距离公式的推导
确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体*得不到体现。
分析“尝试*题组”解题思路可突破难点
(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
2.教法
2-1发现法:本节课为了培养学生探究*思维目标,在教学过程中,使老师的主导*和学生的主体*有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试*题组”,引导、启发学生分析、发现、比较、论*等,从而形成完整的数学模型。
确定依据:
(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进*原则。
(2)事物之间相互联系,相互转化的辩*法思想。
2-2教具:多媒体和黑板等传统教具
3.学法
3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论*后得到一般*结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
3-2学情:
(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定*认识和对两线相交的定量认识,为本节推*公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。
(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。
(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。
3-3学具:直尺、三角板
4.教学评价
学生完成反思*学习报告,书写要求:
(1)整理知识结构
(2)总结所学到的基本知识,技能和数学思想方法
(3)总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因
(4)谈谈你对老师教法的建议和要求。
作用:
(1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2)报告的写作本身就是一种创造*活动。
(3)及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿*教学。
5.板书设计
(略)
6.教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
第3篇:《点到直线的距离》说课稿
(一)教材分析
1、教材的地位和作用
点是几何中最简单的元素,直线是几何中最简单的曲线,点到直线的距离公式从距离的角度定量来刻画点和直线的位置关系,为研究两直线的位置关系及曲线和曲线之间的关系等整个解析几何奠定基础。学生对这节课的理解和掌握,直接关系到对以后解析几何的学习,并且该公式在以后的解析几何学习和研究中有着非常广泛的应用。所以,这节教材对学生学习解析几何具有重要意义。
2、教学对象
这节课的教学对象是高中二年级的学生,他们已经基本掌握直线的方程和两直线的位置关系-------平行、垂直和相交,对三角形的面积公式及算法、两点间的距离公式等都已相当的熟悉。从学生的生理和心理特征以及他们的认识水平来讲,他们对点到直线的距离和两平行线间的距离的空间概念较容易理解,所以这节课的概念的理解不是难点,但是公式的推导是个难点。
3、教学目标
(1)知识目标掌握点到直线的距离的概念、公式及其推导过程,两平行线间的距离的求法及它们的应用。
(2)能力目标通过创设情境,从实际问题引入,培养学生的数学化能力;从简单的例子出发,让学生了解到认识事物的一般规律——从特殊到一般、从实际到抽象的认识规律;由点和直线的关系入手,从公式的推导过程中培养学生的归纳、类比能力,缜密的数学推理能力和重要的数学思想——分类讨论思想和数形结合思想,并培养学生的辨*唯物观点——联系的观点、辨*的观点、统一的观点看问题和综合应用数学知识的能力。
(3)情感目标培养学生对新知识的探索精神,坚韧的意志力和个*品质。通过对*思路的讨论培养学生的发散*思维和*思考的创新意识。
4、教学内容及教材处理
本节课的主要内容是点到直线的距离的概念的理解、公式的推导及其应用,通过创设情景,让学生直观上理解点到直线的距离的实际应用*及研究的必要*,激发学生的求知欲望。然后将实际问题归结为数学问题,从简单的特殊例子入手归纳类比出一般问题的解决方法。这样,既符合学生的心理特点、认知特征和思维规律,也突破了这节课的难点,充分体现了教学和社会生活及生产的联系,也可以在探索发现过程中使学生感到成功的喜悦,培养学生的自信心。
这节课的教学重点、难点和关键如下:
重点点到直线的距离的公式的推导及应用
难点点到直线的距离的推导
突破难点的关键从实际问题出发,以简单的特殊例子入手,从特殊到一般,突破难点
(二)教法分析
教学策略是“创设情景,启发引导,论*推理,发展能力”,具体地说,首先从实际问题引入,创设情景,从简单的特殊例子入手,启发引导、推理,以例题和练习的形式巩固知识,发展能力。
教学思想
以情景启发教学法和讲练结合教学法为主。在教学过程中既注意提供知识的直观素材和背景材料,又为激活相关知识和引导学生思考探索创设现实问题情境。教学的整个过程均从提出问题开始,在师生共同分析、讨论和探索中展开学生的思路,把启发式教学贯穿于整个教学活动过程。真正做到让数学结论尽可能地由学生自己探究出来,充分发挥学生的主体地位,体现以学生发展为本的思想。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除