初中数学《平行线的性质》教案(通用11篇)

初中数学《平行线的性质》教案(通用11篇)

  作为一位兢兢业业的人民教师,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?以下是小编整理的初中数学《平行线的性质》教学教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

  初中数学《平行线的性质》教案 篇1

  教学目标

  (一)知识技能

  经历探索平行线的性质的过程,初步掌握平行线的性质

  (二)过程与方法

  通过观察、操作、推理、交流等活动,进一步发展学生的空间观念结合推理能力。

  (三)情感、态度、价值观

  在学习过程中皮衣学生的唯物主义观点,使学生逐步养成言之有理的习惯。

  教学重点

  1、平行线性质的探索和对性质的理解

  2、应用性质解决实际问题

  教学难点

  有条理地写出推理的过程。

  课前准备

  预习课本

  教具准备

  直尺、三角板

  教法:

  引导、探究、

  学法:

  研讨、探究

  教学进程

  情景导入

  (一)动手操作:

  (1)利用一块三角板和一把画两条互相平行的直线a、b;

  (2)画直线c使它与直线a、b均相交;

  (3)写出一组同位角、一组内错角、一组同旁内角,并用量角器量出它们的度数;

  (4)观察各组角度数的关系,你可以得到怎样的结论?

  (二)交流、探究

  观察发现,得出结论:

  两直线平行,同位角相等。

  两直线平行、内错角相等。

  两直线平行、同旁内角互补。

  请你根据“两直线平行,同位角相等。”

  说明成立的理由。

  因为a∥b,

  所以∠1=∠2

  又因为∠1与∠3是对顶角

  ∠1=∠3

  所以∠2=∠3

  类似地、请根据“两直线平行、同位角相等。”说明“两直线平行、同旁内角互补”成立的理由,并与同学们交流。

  学生画图板演

  小组讨论合作学习

  (三)应用、提高

  AD∥BC,∠A=∠C,试说明AB∥DC

  解:因为AD∥BC

  所以∠C=∠CDE

  又因为∠A=∠C

  所以∠A=∠CDE

  根据“同位角相等两直线平行”

  可以知道AB∥DC

  练一练:

  a∥b∠1=55、∠2=68,求∠3、∠4、∠5的度数

  (四)总结升华

  老师画了一个△ABC,他问同学们∠A+∠B+∠C等于多少度?你能有几种方法得到结论、画图并简述你的理由。

  (五)布置作业:P23、(3、4、5)

  教学反思

  这节课我是这样处理的

  1、系生活实际,创设问题情境。

  2、组织合作交流,营造探究氛围。使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。

  3、尊学生需要,关注学习过程。,更是放手让学生大胆去作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。

  4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。

  课后反思:这节课存在的问题:

  1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

  2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范。

  初中数学《平行线的性质》教案 篇2

  一、教材分析

  教材的地位和作用

  《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。

  教学重难点

  重点:平行线的三个性质及运用。

  难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

  二、目标分析

  根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:

  知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

  过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

  情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

  三、教法、学法

  教法:

  为了让学生真正成为课堂的主人,这节课我选用下面教学方法:

  1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

  2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。

  3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

  学法指导:

  通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

  四、教学过程

  1、创设情境引入

  在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?

  通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

  设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

  :通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。

  2、探索新知

  (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

  :画平行线的这个过程主要让学生明白确定平行线性质。

  前提是要两条平行线,帮助学生区分平行线的性质与判定。

  (2)讲解平行线的性质一。

  :加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

  (3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。

  :这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

  (4)总结平行线的性质

  性质1:两直线平行,同位角相等、

  性质2:两直线平行,内错角相等、

  性质3:两直线平行,同旁内角互补、

  (5)平行线的性质和平行线的判定区别:

  要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

  3、知识运用

  (1)解决引入时提出的问题

  (2)利用所学的知识小组交流20页例题

  (4)完成导学案上课堂练习

  :通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

  4、回顾总结

  (1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?

  (2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?

  :通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

  5、课堂检测

  完成导学案上课堂检测习题

  设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。

  6、作业设计

  P24第4、12题

  :本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

  五、说板书设计

  平行线的性质

  1.平行线的性质:

  性质1:例题:练习:

  性质2:

  性质3:

  2.平行线的性质与

  判定的区别

  :这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

  初中数学《平行线的性质》教案 篇3

  今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学xx年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了xx的基础上,对xx的进一步深入和拓展;另一方面,又为学习接下来的知识奠定了基础,是进一步研究xx的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了xx,对xx已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于xx的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1、知识与技能目标:

  2、过程与方法目标:

  3、情感态度与价值目标:

  三、教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,xx是本节课深入研究xx的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环。

  (3)发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4)分析思考,加深理解

  设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。

  (5)强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6)小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、

  (7)当堂检测对比反馈

  (8)布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  初中数学《平行线的性质》教案 篇4

  一、教材分析

  (一)、教材内容的地位和作用

  《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

  (二)、教学目标

  根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

  知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

  情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

  (三)、教学重点、难点

  教学重点:代数式求值的书写格式。

  教学难点:代数式求值的书写格式,变式训练知识的运用。

  二:教法、学法分析

  本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

  板书设计:

  代数式的值

  一、定义四、小试牛刀七、练习

  二、例1五、阶段小结八、总结

  三、例2六、例3九、作业

  三:评价与反思

  新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

  教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

  无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

  初中数学《平行线的性质》教案 篇5

  今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

  一、教学内容

  “平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。

  因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

  在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。

  二、教学目标

  基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:

  1、让学生通过直观认识,掌握平行线的判定方法;

  2、会根据判定方法进行简单的推理并能写出简单的说理过程;

  3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

  同时确定本节课的重难点:

  重点:在观察实验的基础上进行判定方法的概括与推导。

  难点:方法的归纳、提炼;

  三、教学方法及手段

  布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循“教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法、让学生合作、探究,主动发现。

  教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。

  四、教学过程

  1、复习旧知,承前启后

  如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系。

  此问题旨在复习原来的知识,从而为新知识作好铺垫。

  2、创设情境、合作探究

  问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。

  问题:如何判断一条纸带的边沿是否平行?

  要求:

  1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);

  2、对工具使用不做限制。

  对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。

  最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。

  ⑴、推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;

  其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。

  ⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;

  而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。

  ⑶折的方法。

  经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:

  内错角相等,两条直线平行。

  同旁内角互补,两直线平行。

  其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。

  3、初步应用,熟悉新知

  “学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。

  找一找,说一说:

  1、课本练习:如图,直线a,b被直线l所截,

  ⑴若∠1=750,∠2=750,则a与b平行吗根据什么

  ⑵若∠2=750,∠3=1050,则a与b平行吗根据什么

  2、根据下列条件,找出图中的平行线,并说明理由:

  图(1)∠1=1210,∠2=1200,∠3=1200;

  图(2)∠1=1200,∠2=600,∠3=620。

  对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。

  例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行并说明理由。

  确定例题是难点,基于以下两点考虑:

  1、根据已有的条件与图形,无法解决问题时,要添加辅助线。

  2、将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。

  因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。

  4、练习反馈,巩固新知。

  说一说,写一写:

  1、如图,∠1=∠2=∠3。填空:

  ⑴∵∠1=∠2()

  ∴∥()

  ⑵∵∠2=∠3()

  ∴∥()

  2、如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。

  练习的安排遵循了由浅入深的原则,让学生在观察后再动手。

  说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。

  因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的'学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。

  附加题:

  ⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)你能帮他们想想办法吗?

  ⑵一个合格的弯行管道,当∠C=600,∠B=时,才能在经历两次拐弯后保持平行(AB∥CD)。请写出理由。

  5、知识整理,归纳小结

  用问题的形式引发学生思索本节课的收获

  提醒学生在这两方面思考:

  ⑴在实验、合作、探究的过程中我们的收获

  ⑵如果要判定两直线平行时,我们可以联想到

  6、布置作业:结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。

  初中数学《平行线的性质》教案 篇6

  一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。

  试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?

  试验2:学生试验(发印制好的平行线纸单)。

  (1)要求学生任意画一条直线c与直线a、b相交;

  (2)选一对同位角来度量,看看这对同位角是否相等。

  学生归纳:两条平行线被第三条直线所截,同位角相等。

  二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。

  活动1

  问题讨论:

  我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。

  教师活动设计:引导学生讨论并回答。

  学生口答,教师板书,并要求学生学习推理的书写格式。

  活动2

  总结平行线的性质。

  性质2:两条平行线被第三条直线所截,内错角相等。

  简单说成:两直线平行,内错角相等。

  性质3:两条平行直线被第三条直线所截,同旁内角互补。

  简单说成:两直线平行,同旁内角互补。

  初中数学《平行线的性质》教案 篇7

  教学目标:

  1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

  2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

  重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

  难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  教学过程  一、引导学生逆向思维

  现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

  二、实践探究

  1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5。3—1)。

  2、学生测量这些角的度数,把结果填入表内。

  角∠1∠2∠3∠4∠5∠6∠7∠8

  度数

  3、学生根据测量所得数据作出猜想。

  (1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?

  (3)图中哪些角是同旁内角?它们具有怎样的数量关系?

  4、学生验证猜测。

  学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

  5、师生归纳平行线的性质,教师板书。

  平行线具有性质:

  性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。

  性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。

  性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。

  教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。

  平行线的性质平行线的判定

  因为a∥b,因为∠1=∠2,

  所以∠1=∠2所以a∥b。

  因为a∥b,因为∠2=∠3,

  所以∠2=∠3,所以a∥b。

  因为a∥b,因为∠2+∠4=180°,

  所以∠2+∠4=180°,所以a∥b。

  6、教师引导学生理清平行线的性质与平行线判定的区别。

  学生交流后,师生归纳:两者的条件和结论正好相反:

  由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。

  由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。

  7、进一步研究平行线三条性质之间的关系。

  教师:大家能根据性质1,推出性质2成立的道理吗?

  结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。

  因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

  又∠3=∠1(对顶角相等),所以∠2=∠3。

  教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。

  学生仿照以下说理,说出如何根据性质1得到性质3的道理。

  8、平行线性质应用。

  讲解课本P23例题

  三、巩固练习

  课本练习(P22)。

  四、作业

  课本P22。1,2,3,4,6。

  初中数学《平行线的性质》教案 篇8

  

  ◆知识目标:理解掌握平行线的性质并能应用

  ◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

  ◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

  

  ◆重点:平行线的性质是重点

  ◆难点:例4是难点

  

  一、知识回顾:

  1、平行线的判定

  2、平行线的性质

  二、

  1、合作学习:

  如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:

  (1)图中有哪几对角相等?

  (2)∠3与∠1有什么关系?∠4与∠2有什么关系?

  2、你发现平行线还有哪些性质?

  平行线的性质:

  CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  3、做一做:

  如图,AB,CD被EF所截,AB∥CD(填空)

  若∠1=120°,则∠2=()∠3=-∠1=()

  4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。

  思考下列几个问题:

  (1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?

  (2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?

  (3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)

  ∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)

  ∴∠2+∠BAD=180°(两直线平行,同旁内角互补)

  E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)

  讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?

  5、练一练:(P、14课内练习1、2)

  6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

  ∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:

  (1)AB与CD平行吗?为什么?

  (2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?

  (3)∠CBD与∠ABD相等吗?为什么?

  解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)

  ∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)

  ∵BD平分∠ABC(已知)

  ∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)

  7、练一练:

  如图,已知∠1=∠2,∠3=65°,求∠4的度数。

  三、拓展

  12a34bD图1-15Ccd

  1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由

  2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C

  ABA图1 B FECD

  四、知识整理:

  1、平行线的性质:

  两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等

  3、要注意一题多解

  五、布置作业

  P、15作业题及作业本。

  初中数学《平行线的性质》教案 篇9

  教学目的

  1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

  2.使学生了解平行线的性质和判定的区别.

  重点难点

  1.平行的三个性质,是本节的重点,也是本章的重点之一.

  2.怎样区分性质和判定,是教学中的一个难点.

  教学过程

  一、引入

  问:我们已经学习过平行线的哪些判定公理和定理?

  学生齐答:

  1.同位角相等,两直线平行.

  2.内错角相等,两直线平行.

  3.同旁内角互补,两直线平行.

  问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?

  学生答:

  1.两直线平行,同位角相等.

  2.两直线平行,内错角相等.

  3.两直线平行,同旁内角互补.

  教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.

  二、新课

  平行线的性质一:两条平行线被第三条直线所截,同位角相等.

  简单说成:两直线平行,同位角相等.

  怎样说明它的正确性呢?

  方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.

  方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)

  已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.

  求证:∠1=∠2.

  证明:(反证法)

  假定∠1≠∠2,

  则过∠1顶点O作直线A′B′使∠EOB′=∠2.

  ∴A′B′∥CD(同位角相等,两直线平行).

  故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.

  ∴∠1=∠2.

  另证:(同一法)

  过∠1顶点O作直线A′B′使∠E0B′=∠2.

  ∴A′B′∥CD(同位角相等,两直线平行).

  ∵AB∥CD(已知),且O点在AB上,O点在A′B′上,

  ∴A′B′与AB重合(平行公理)

  ∴∠1=∠2.

  平行线的性质二:两条平线被第三条直线所截,内错角相等.

  简单说成:两直线平行,内错角相等.

  启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.

  已知:如图2-33,直线AB、CD被EF所截,AB∥CD,

  求证:∠3=∠2.

  证明:

  ∵AB∥CD(已知)

  ∴∠1=∠2(两直线平行,同位角相等).

  ∵∠1=∠3(对顶角相等),

  ∴∠3=∠2(等量代换).

  说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.

  平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.

  简单说成:两直线平行,同旁内角互补.

  要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.

  已知:如图2-34,直线AB、CD被EF所截,AB∥CD.

  求证:∠2+∠4=180°.

  证法一:

  ∵AB∥CD(已知),

  ∴∠1=∠2(两直线平行,同位角相等),

  ∵∠1+∠4=180°(邻补角),

  ∴∠2+∠4=180°(等量代换).

  证法二:

  ∵AB∥CD(已知),

  ∴∠2=∠3(两直线平行,内错角相等).

  ∵∠3+∠4=180°(邻补角),

  ∴∠2+∠4=180°(等量代换).

  例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).

  解:∠B=180°-∠A=65°,

  ∠C=180°-∠D=80°.(根据平行线的性质三)

  小结:平行线的性质与判定的区别:

  1.从因果关系上看

  性质:因为两条直线平行,所以……;

  判定:因为……,所以两条直线平行.

  2.从所起作用上看

  性质:根据两条直线平行,去证两角相等或互补:

  判定:根据两角相等或互补,去证两条直线平行.

  三、作业

  1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

  2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

  3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.

  教后记:.

  学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。

  初中数学《平行线的性质》教案 篇10

  一、教学目标

  1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.

  2.会用平行线的性质进行推理和计算.

  3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.

  4.通过学习了平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.

  二、学法引导

  1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

  2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

  三、重点·难点解决办法  (一)重点

  平行线的性质公理及平行线性质定理的推导.

  (二)难点

  平行线性质与判定的区别及推导过程.

  (三)解决办法

  1.通过教师创设情境,学生积极思维,解决重点.

  2.通过学生自己推理及教师指导,解决难点.

  3.通过学生讨论,归纳小结.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、三角板、自制投影片.

  六、师生互动活动设计

  1.通过引例创设情境,引入课题.

  2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.

  3.通过学生讨论,完成课堂小结.

  七、教学步骤  (一)明确目标

  掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.

  (二)整体感知

  以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.

  (三)教学过程

  创设情境,复习导入

  师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

  1.如图1,

  (1)∵ (已知),∴ ( ).

  (2)∵ (已知),∴ ( ).

  (3)∵ (已知),∴ ( ).

  2.如图2,(1)已知 ,则 与 有什么关系?为什么?

  (2)已知 ,则 与 有什么关系?为什么?

  图2 图3

  3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?

  学生活动:学生口答第1、2题.

  师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:

  [板书]2.6 平行线的性质

  通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.

  探究新知,讲授新课

  师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

  学生活动:学生在练习本上画图并思考.

  学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.

  让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.

  学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.

  提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?

  学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.

  根据学生的回答,教师肯定结论.

  师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.

  [板书]两条平行线被第三条直线所截,同位角相等.

  简单说成:两直线平行,同位角相等.

  在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.

  提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

  学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.

  师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.

  学生活动:学生们思考,并相互讨论后,有的同学举手回答.

  在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.

  教师根据学生回答,给予肯定或指正的同时板书.

  [板书]∵ (已知),∴ (两条直线平行,同位角相等).

  ∵ (对项角相等),∴ (等量代换).

  师:由此我们又得到了平行线有怎样的性质呢?

  学生活动:同学们积极举手回答问题.

  教师根据学生叙述,板书:

  [板书]两条平行经被第三条直线所截,内错角相等.

  简单说成:西直线平行,内错角相等.

  师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.

  师生共同订正推导过程和第三条性质,形成正确板书.

  [板书]∵ (已知),∴ (两直线平行,同位角相等).

  ∵ (邻补角定义),

  ∴ (等量代换).

  即:两条平行线被第三条直线所截,同旁内角互补.

  简单说成,两直线平行,同旁内角互补.

  师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)

  尝试反馈,巩固练习

  师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

  学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):

  如图7,已知平行线 、 被直线 所截:

  (1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?

  练习目的是巩固平行线的三条性质.

  变式训练,培养能力

  完成练习(出示投影片3).

  如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?

  学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.

  学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.

  [板书]解:∵ (梯形定义),∴ (两直线平行,同旁内角互补).∴ .∴ .

  变式练习(出示投影片4)

  1.如图9,已知直线 经过点

  (1) 等于多少度?为什么?

  (2) 等于多少度?为什么?

  (3) 、 各等于多少度?

  2.如图10, 在一条直线上,

  (1) 时, 各等于多少度?为什么?

  (2) 时, 各等于多少度?为什么?

  学生活动:学生独立完成,把理由写成推理格式.

  题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.

  (四)总结、扩展

  (出示投影片1第1题和投影片5)完成并比较.

  如图11,

  (1)∵ (已知),

  ∴ ( ).

  (2)∵ (已知),

  ∴ ( ).

  (3)∵ (已知),

  ∴ ( ).

  学生活动:学生回答上述题目的同时,进行观察比较.

  师:它们有什么不同,同学们可以相互讨论一下.

  (出示投影6)

  学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.

  通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.

  巩固练习(出示投影片7)

  1.如图12,已知 是 上的一点, 是 上的一点,

  (1) 和 平行吗?为什么?

  (2) 是多少度?为什么?

  学生活动:学生思考、口答.

  这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.

  八、布置作业  (一)必做题

  课本第99~100页A组第11、12题.

  (二)选做题

  课本第101页B组第2、3题.

  作业答案

  A组11.

  (1)两直线平行,内错角相等.

  (2)同位角相等,两直线平行.两直线平行,同旁内角互补.

  (3)两直线平行,同位角相等.对顶角相等.

  12.

  (1)∵ (已知),∴ (内错角相等,两直线平行).

  (2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).

  B组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).

  ∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .

  13.平行线的判定与平行线的性质,它们的题设和结论正好相反.

  初中数学《平行线的性质》教案 篇11

  教学目标

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  对话探索设计

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习5

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业6

  P25.1、2、3

  〖补充作业7

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除