初二函数知识点总结

初二函数知识点总结

  初二函数是初中比较难的一个题目,那么我们应该怎么更多地掌握相关的知识呢?下面初二函数知识点总结是小编为大家整理的,在这里跟大家分享一下。

  初二函数知识点总结

  知识点1 一次函数和正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

  知识点2 函数的图象

  由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

  画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

  知识点3一次函数y=kx+b(k,b为常数,k≠0)的`性质

  (1)k的正负决定直线的倾斜方向;

  ①k>0时,y的值随x值的增大而增大;

  ②k﹤O时,y的值随x值的增大而减小.

  (2)|k|大小决定直线的倾斜程度,即|k|越大

  ①当b>0时,直线与y轴交于正半轴上;

  ②当b<0时,直线与y轴交于负半轴上;

  ③当b=0时,直线经过原点,是正比例函数.

  (4)由于k,b的符号不同,直线所经过的象限也不同;

  ①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

  ②如图所示,当k>0,b

  ③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

  ④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

  (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

  知识点4 正比例函数y=kx(k≠0)的性质

  (1)正比例函数y=kx的图象必经过原点;

  (2)当k>0时,图象经过第一、三象限,y随x的增大而增大;

  (3)当k<0时,图象经过第二、四象限,y随x的增大而减小.

  知识点5 点P(x0,y0)与直线y=kx+b的图象的关系

  (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

  (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

  例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.

  知识点6 确定正比例函数及一次函数表达式的条件

  (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

  (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

  知识点7 待定系数法

  先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

  知识点8 用待定系数法 确定一次函数表达式一般步骤

  (1)设函数表达式为y=kx+b;

  (2)将已知点的坐标代入函数表达式,解方程(组);

  (3)求出k与b的值,得到函数表达式.

  思想方法小结 (1)函数方法.(2)数形结合法.

  知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.

  ①当b>0时,直线与y轴的正半轴相交;

  当b=0时,直线经过原点;

  当b﹤0时,直线与y轴的负半轴相交.

  ②当k,b异号时,直线与x轴正半轴相交;

  当b=0时,直线经过原点;

  当k,b同号时,直线与x轴负半轴相交.

  ③当k>O,b>O时,图象经过第一、二、三象限;

  当k>0,b=0时,图象经过第一、三象限;

  当b>O,b

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除