数学分解因式法教案设计

数学分解因式法教案设计

  数学分解因式法教案设计

  教学目标:

  1、会用分解因式法(提公因式,公式法)解某些简单的数字系数的一元二次方程。

  2、能根据具体的.一元一次方程的特征灵活选择方法,体会解决问题方法的多样性。

  教学程序:

  一、复习:

  1、一元二次方程的求根公式:x=(b2-4ac≥0)

  2、分别用配方法、公式法解方程:x2-3x+2=0

  3、分解因式:(1)5 x2-4x (2)x-2-x(x-2)(3) (x+1)2-25

  二、新授:

  1、分析小颖、小明、小亮的解法:

  小颖:用公式法解正确;

  小明:两边约去x,是非同解变形,结果丢掉一根,错误。

  小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。

  2、分解因式法:

  利用分解因式来解一元二次方程的方法叫分解因式法。

  3、例题讲析:

  例:解下列方程:

  (1) 5x2=4x(2) x-2=x(x-2)

  解:(1)原方程可变形为:

  5x2-4x=0

  x(5x-4)=0

  x=0或5x=4=0

  ∴x1=0或x2=

  (2)原方程可变形为

  x-2-x(x-2)=0

  (x-2)(1-x)=0

  x-2=0或1-x=0

  ∴x1=2,x2=1

  4、想一想

  你能用分解因式法简单方程 x2-4=0

  (x+1)2-25=0吗?

  解:x2-4=0(x+1)2-25=0

  x2-22=0 (x+1)2-52=0

  (x+2)(x-2)=0 (x+1+5)(x+1-5)=0

  x+2=0或x-2=0x+6=0或x-4=0

  ∴x1=-2, x2=2 ∴x1=-6 , x2=4

  三、巩固:

  练习:P62 随堂练习 1、2

  四、小结:

  (1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。

  (2)分解因式时,用公式法提公式因式法

  五、作业:

  P62 习题2.7 1、2

  六、教学后记

  数学教案-北师大版一文由中国教案站搜集整理,版权归作者所有,转载请注明出处!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除