反比例教案
反比例教案
作为一位无私奉献的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。写教案需要注意哪些格式呢?以下是小编为大家整理的反比例教案,欢迎大家借鉴与参考,希望对大家有所帮助。
反比例教案1
1.1反比例函数的定义 1.2反比例函数的图像与性质 1.3反比例函数的应用
网盘地址http://www.mofile.com/pickup/75s55jut89h7lni/
反比例教案2
新课改要求变传统的接受式学习方式为新型的探究式学习方式,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来,使学习过程更多地成为学生发现问题、解决问题、探索研究、创新求异的过程。在设计《反比例的意义》时,我考虑到此前学生学习了正比例的意义,对“什么是相关联的量”、“成正比例的两个量的特征”已经有了很好的认识,因此我灵活使用教材,对教学内容进行创造性的加工和处理,努力克服教材的局限性,最大限度地为学生拓宽探究学习的空间,提高学生的学习兴趣。
让学生猜测什么是反比例时,有的成正比例,还有可能成什么量时,有的学生说,只要这两种两关联的量的比值不一定,就成反比例,有的学生说,那不对,应该是积一定,才成反比例。学生在这个过程中,经历了猜想、思考、辩论,课堂气氛很好。
学生有了学习正比例的基础,今天学习反比例,非常轻松。
反比例教案3
《反比例》
《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。
在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。
这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
小组合作,归纳推理,探究交流
多媒体课件
1课时
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米) 30 20 15 10 5
底面积(平方厘米) 10 15 20 30 60
体积(立方厘米)
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识
总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?
反比例
高度(厘米) 30 20 15 10 5
底面积(平方厘米) 10 15 20 30 60
体积(立方厘米) 300 300 300 300 300
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
高×底面积=水的体积(一定)
反比例关系式:x×y=k(一定)
反比例教案4
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
五、例习题分析
例1.见教材第57页
分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反
例2.见教材第58页
分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?
例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米
六、随堂练习
1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的'函数关系式为
2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度
答案:=,当V=2时,=7.15
反比例教案5
教学目标:
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学准备 :实物投影
教学预设:
一、概念复习:
1、提问:怎样的两个量成正、反比例?
根据学生回答板书字母关系式。
二、书本练习:
1、第9题。
(1)观察每个表中的数据,讨论前三个问题。
要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
(2)组织学生讨论第四个问题。
启发学生根据条件直接写出关系式,再根据关系式直接作出判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。
要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习
1、对比练习:判断下列说法是否正确。
(1)圆的周长和圆的半径成正比例。( )
(2)圆的面积和圆的半径成正比例。( )
(3)圆的面积和圆的半径的平方成正比例。( )
(4)圆的面积和圆的周长的平方成正比例。( )
(5)正方形的面积和边长成正比例。( )
(6)正方形的周长和边长成正比例。( )
(7)长方形的面积一定时,长和宽成反比例。( )
(8)长方形的周长一定时,长和宽成反比例。( )
(9)三角形的面积一定时,底和高成反比例。( )
(10)梯形的面积一定时,上底和下底的和与高成反比例。( )
反比例教案6
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?
(2)说明:这道题还可以用比例知识解答。
提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)
三、巩固练习
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业
完成练习十三第2~6题的解答。
反比例教案7
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式 ,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。
(3) (k0)还可以写成 (k0)或xy=k(k0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
反比例教案8
教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:反比例函数 的应用
教学程序:
一、新授:
1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?
答:P=600s (s0),P 是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=60k
2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R() 3 4 5 6 7 8 9 10
I(A )
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
P145~146 1、2、3、4、5
作业:P146 习题5.4 1、2
反比例教案9
教学目标
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用,反比例的意义(参考教案二)。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1.(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2.填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的和剩下的( )。
(4)汽车行驶的速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1.出示例4。(小黑板(二))
例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
反比例教案10
教学目标
1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.
2.使学生能正确判断正、反比例.
教学重点
正、反比例的联系和区别.
教学难点
能正确判断正、反比例.
教学过程()
一、复习准备
判断下面每题中两种量成正比例还是成反比例.
1.单价一定,数量和总价.
2.路程一定,速度和时间.
3.正方形的边长和它的面积.
4.时间一定,工效和工作总量.
二、新授教学
(一)出示课题
教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.
(二)教学例7(课件演示:正反比例的比较)
例7.观察下面的两个表,根据表分别填空.
表1
路程(千米)
5
10
25
50
100
时间(时)
1
2
5
10
20
在表1中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和路程成( )关系.
表2
速度(千米/时)
100
50
20
10
5
时间(时)
1
2
5
10
20
在表2中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和速度成( )关系.
1.分组讨论、交流.
2.引导学生讨论回答
(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?
(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?
3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.
速度×时间=路程
4.练习:判断下面两个量成什么比例.
(1)当速度一定时,路程和时间.
(2)当路程一定时,速度和时间.
(3)当时间一定时,路程和速度.
(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)
讨论填表:正、反比例异同点
相同点:都有两种相关联的量,一种量随着另一种量变化.
不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.
三、课堂小结
今天我们学习了哪些知识?你还有什么问题吗?
四、巩固练习
(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?
1.单价一定,数量和总价成( ).
2.总价一定,单价和数量成( ).
3.数量一定,总价和单价成( ).
(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?
五、课后作业
一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.
表1
在表1中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,大米的总量和用的天数成( )关系.
表2
在表2中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,每天用的数量和用的天数成( )关系.
六、板书设计
正比例和反比例的比较
相同点
1.都有两种相关联的量.
2.一种量随着另一种量变化.
不同点
1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.
2.相对应的每两个数的比值(商)是一定的.
1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).
2.相对应的每两个数的积是一定的.
探究活动
灵活判断
活动目的
1.理解正反比例的意义.
2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.
活动过程
1.教师出示思考题目:
(1)正方形的边长和面积是否成比例?
(2)圆的面积和半径是否成比例?
2.学生分小组讨论.
3.学生分小组汇报讨论结果.
4.师生共同小结并总结规律.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除