高中数学阶乘公式

高中数学阶乘公式

  阶乘公式是高中数学要学习的重要内容。为了帮助高中学生掌握阶乘公式,下面小编给大家带来数学阶乘公式,希望对你有帮助。

  高中数学阶乘公式公式

  阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,没有简便公式的,只能硬算。

  例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。

  任何大于1的自然数n阶乘表示方法:

  n!=1×2×3×……×n

  或

  n!=n×(n-1)!

  n的双阶乘:

  当n为奇数时表示不大于n的所有奇数的乘积

  如:7!!=1×3×5×7

  当n为偶数时表示不大于n的所有偶数的乘积(除0外)

  如:8!!=2×4×6×8

  小于0的整数-n的阶乘表示:

  (-n)!= 1 / (n+1)!

  以下列出0至20的阶乘:

  0!=1,注意(0的阶乘是存在的)

  1!=1,

  2!=2,

  3!=6,

  4!=24,

  5!=120,

  6!=720,

  7!=5,040,

  8!=40,320

  9!=362,880

  10!=3,628,800

  11!=39,916,800

  12!=479,001,600

  13!=6,227,020,800

  14!=87,178,291,200

  15!=1,307,674,368,000

  16!=20,922,789,888,000

  17!=355,687,428,096,000

  18!=6,402,373,705,728,000

  19!=121,645,100,408,832,000

  20!=2,432,902,008,176,640,000

  另外,数学家定义,0!=1,所以0!=1!

  高中数学弧度公式

  在数学和物理中,弧度是角的度量单位。它是由国际单位制导出的单位,单位缩写是rad。定义:弧长等于半径的弧,其所对的圆心角为1弧度。(即两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆的半径时,两条射线的夹角的弧度为1)。

  根据定义,一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。

  在具体计算中,角度以弧度给出时,通常不写弧度单位,直接写值。最典型的例子是三角函数,如sin 8π、tan (3π/2)。

  在初中数学中,我们学过圆弧长公式:

  弧长=nπr2/360,在这里n就是角度数,即圆心角n所对应的弧长。

  但如果我们利用弧度的话,以上的.式子将会变得更简单:(注意,弧度有正负之分)

  l=|α| r,即α的大小与半径之积。

  同样,我们可以简化扇形面积公式:

  S=|α| r^2/2(二分之一倍的α角的大小,与半径的平方之积,从中我们可以看出,当|α|=2π,即周角时,公式变成了S=πr^2,圆面积的公式!)

  在 Windows 操作系统附带的计算器程序(电脑左下角的开始→程序→附件→计算器)的科学计算法里,可以调用弧度来进行计算。

  高中数学曲线公式

  圆锥曲线公式:椭圆

  1、中心在原点,焦点在x轴上的椭圆标准方程:其中x/a+y/b=1,其中a>b>0,c=a-b

  2、中心在原点,焦点在y轴上的椭圆标准方程:y/a+x/b=1,其中a>b>0,c=a-b

  参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)

  圆锥曲线公式:双曲线

  1、中心在原点,焦点在x轴上的双曲线标准方程:x/a-y/b=1,其中a>0,b>0,c=a+b.

  2、中心在原点,焦点在y轴上的双曲线标准方程:y/a-x/b=1,其中a>0,b>0,c=a+b.

  参数方程:x=asecθ;y=btanθ(θ为参数)

  圆锥曲线公式:抛物线

  参数方程:x=2pt;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0

  直角坐标:y=ax+bx+c(开口方向为y轴,a≠0)x=ay+by+c(开口方向为x轴,a≠0)

  离心率

  椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。且当01时为双曲线。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除