初中数学概率的定义知识点

初中数学概率的定义知识点大全

  在平凡的学习生活中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。为了帮助大家更高效的学习,下面是小编为大家整理的初中数学概率的定义知识点,欢迎大家分享。

  初中数学概率的定义知识点1

  随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。但如果一件事情发生的概率是1/n,不是指n次事件里必有一次发生该事件,而是指此事件发生的频率接近于1/n这个数值。

  概率的频率定义

  随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

  概率的严格定义

  设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:

  (1)非负性:对于每一个事件A,有P(A)≥0;

  (2)规范性:对于必然事件S,有P(S)=1;

  (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

  概率的古典定义

  如果一个试验满足两条:

  (1)试验只有有限个基本结果;

  (2)试验的'每个基本结果出现的可能性是一样的。

  这样的试验,成为古典试验。

  对于古典试验中的事件A,它的概率定义为:

  P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。

  概率的统计定义

  在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。

  在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(Jocob Bernoulli,公元1654年~1705年)。

  从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。

  由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。

  Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。

  初中数学概率的定义知识点2

  1、 必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p。

  注意:(1)概率是随机事件发生的`可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。

  初中数学概率的定义知识点3

  考点1:确定事件和随机事件

  考核要求:

  〔1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  〔2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点2:事件发生的可能性大小,事件的概率

  考核要求:

  〔1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  〔2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  〔1〕在给可能性的大小排序前可先用〝一定发生〞、〝很有可能发生〞、 〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性的大小;

  〔2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点3:等可能试验中事件的概率问题及概率计算

  考核要求

  〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

  〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

  〔1〕计算前要先确定是否为可能事件;

  〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点4:数据整理与统计图表

  考核要求:

  〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点5:统计的含义

  考核要求:

  〔1〕知道统计的意义和一般研究过程;

  〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点6:平均数、加权平均数的概念和计算

  考核要求:

  〔1〕理解平均数、加权平均数的概念;

  〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点7:中位数、众数、方差、标准差的概念和计算

  考核要求:

  〔1〕知道中位数、众数、方差、标准差的概念;

  〔2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  〔2〕求中位数之前必须先将数据排序。

  考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:

  〔1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:

  〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的`意计算及其应用,并掌握其概念和计算方法;

  〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,

  要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

  单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

  一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

  这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

  韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

  初中数学概率的定义知识点4

  随机事件的概率及概率的意义

  1、基本概念:

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事nA

  件A出现的频数;称事件A出现的比例fn(A)=n

  为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。nA

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值n,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  概率的基本性质

  1、基本概念:

  (1)事件的包含、并事件、交事件、相等事件

  (2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

  (3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

  (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A

  ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

  2、概率的基本性质:

  1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

  3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

  4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:

  (1)事件A发生且事件B不发生;

  (2)事件A不发生且事件B发生;

  (3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

  (1)事件A发生B不发生;

  (2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

  古典概型

  (1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

  (2)古典概型的解题步骤;

  ①求出总的基本事件数;

  ②求出事件A所包含的'基本事件数,然后利用公式P(A)=

  A包含的基本事件数

  总的基本事件个数

  (3)转化的思想:常见的古典概率模型:抛硬币、掷骰子、摸小球(学会编号)、抽产品等等,很多概率模型可以转化归结为以上的模型。

  (4)若是无放回抽样,则可以不带顺序

  若是有放回抽样,则应带顺序,可以参考掷骰子两次的模型。

  几何概型

  1、基本概念:

  (1)几何概率模型特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等。

  (2)几何概型的概率公式:

  构成事件A的区域长度(面积或体积)

  P(A)=试验的全部结果所构成的区域长度(面积或体积);

  (3)几何概型的'解题步骤;

  1、确定是何种比值:若变量选取在区间内或线段上是长度比,若变量选取在平面图形内是面积比,若变量选取在几何体内是体积比。

  2、找出临界位置求解。

  (4)特殊题型:相遇问题:若题目中有两个变量,则采用直角坐标系数形结合的方法求解。

  数学圆的对称性知识点

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

  数学不等式知识点

  1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

  (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

  (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

  (4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。

  2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

  3.常用不等式有:(根据目标不等式左右的运算结构选用)

  a、b、c R,(当且仅当时,取等号)

  4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

  5.含绝对值不等式的性质:

  6.不等式的恒成立,能成立,恰成立等问题

  (1)恒成立问题

  若不等式在区间上恒成立,则等价于在区间上

  若不等式在区间上恒成立,则等价于在区间上

  (2)能成立问题

  (3)恰成立问题

  若不等式在区间上恰成立,则等价于不等式的解集为.

  若不等式在区间上恰成立,则等价于不等式的解集为,

  初中数学概率的定义知识点5

  1、统计

  科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。

  扇形统计图:

  ①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

  ②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

  各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  近似数字和有效数字:

  ①测量的结果都是近似的。

  ②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  ③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

  平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的'算术平均数,记为X(上边一横)。

  加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

  中位数与众数:

  ①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  ②一组数据中出现次数最大的那个数据叫做这个组数据的众数。

  ③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

  调查:

  ①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

  ②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

  ③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

  频数与频率:

  ①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

  ②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

  2、概率

  可能性:

  ①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。

  ②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

  ③一般来说,不确定事件发生的可能性是有大小的。

  概率:

  ①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

  ②游戏对双方公平是指双方获胜的可能性相同。

  ③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

  初中数学概率的定义知识点6

  一、统计与概率改革的意义

  统计与概率内容的改革,对促进初中数学教学内容的现代化、结构的合理化,推动教育技术手段的现代化,改进教师的教学方式和学生的学习方式等都有积极的作用。

  1.使初中数学内容结构更加合理现行初中数学教学内容主要包括代数、几何,统计含在代数之中。在初中阶段增加统计与概率的内容,能够使初中数学的内容结构在培养学生的能力方面更加合理。有利于信息技术的整合增加统计与概率的份量,有利于计算器等现代信息技术在数学教学中的普遍应用。

  2.有效地改变教师的教学方式和学生的学习方式转变方式是学习统计与概率的内在要求。传统的传授式教学已不能满足教学的需要,学生的学习方式由被动接受变为主动探究。

  二、处理统计与概率的基本原则

  1.突出过程,以统计过程为线索处理统计与概率的内容统计学的主要任务是,研究如何以有效的方式收集和处理受随机性影响的数据,通过分析数据对所考察的问题作出推断和预测,从而为决策和行动提供依据和建议。

  2.强调活动,通过活动体验统计的思想,建立统计的观念统计与生活实际是密切联系的',在收集数据、处理数据以及利用数据进行预测、推断和决策的过程中包含着大量的活动,完成这些活动需要正确的统计思想观念的指导。统计的学习要强调让学生从事简单的数据收集、整理、描述、分析,以及根据统计结果进行判断和预测等活动,以便渗透统计的思想,建立统计的观念。

  3.循序渐进、螺旋上升式安排内容统计是一个包括数据的收集、整理、描述和分析的完整过程,这个过程中的每一步都包含着多种方法。例如,收集数据可以利用抽样调查,也可以进行全面调查;在描述数据中,可以用象形图、条形图、扇形图、直方图、折线图等各种统计图描述数据。对统计过程中的任意一步,教材不可能在一个统计过程中全面介绍,因此教材可以采用循序渐进、螺旋上升的方式处理内容,在重复统计活动的过程中,逐步安排收集数据和处理数据内容。

  三、处理统计与概率时值得注意的几个问题

  1.统计与概率宜分别相对集中安排概率是刻画事件发生可能性大小的量,统计是通过处理数据,利用分析数据的结果进行预测或决策的过程。从统计学内在的知识体系看,概率是统计学的有机组成部分,在数据的分析阶段,可以利用概率进行统计分析,从数据中得出结论,根据结论进行预测或判断。

  2.使用信息技术,突出统计量的统计意义信息技术的发展,使收集数据和处理数据变得更方便、更快捷。我们可以通过计算机网络收集数据,利用计算机软件制作统计表,绘制各种统计图以及进行概率实验,这是统计与概率在各行各业得到广泛应用的一个重要原因。

  3.淡化处理概念虽然概率与统计的概念不多,但有些概念给出定义是困难的,教材不必追求严格定义,应将重点放在理解概念的意义上来。

  4.选材广泛,文字叙述通俗、简洁统计(包括概率)的现实生活素材是非常丰富的,编写教材时应当充分挖掘,尽量从学生的生活实际出发来引出和呈现内容,通过丰富的素材处理内容。

  5.体现对教学方法和学习方式的指导统计(包括概率)与代数、几何相比,在研究的问题上以及研究问题的方法等方面有很大区别。统计、概率与现实生活密切联系,可以通过大量的活动来学习。

  初中数学概率的定义知识点7

  一、求复杂事件的概率:

  1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

  2.对于作何一个随机事件都有一个固定的概率客观存在。

  3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

  (1)尽量经历反复实验的过程,不能想当然的作出判断;

  (2)做实验时应当在相同条件下进行;

  (3)实验的次数要足够多,不能太少;

  (4)把每一次实验的结果准确,实时的做好记录;

  (5)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;

  (6)观察分析统计图,找出频率变化的.逐渐稳定值,并用这个稳定值估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

  二、判断游戏公平:

  游戏对双方公平是指双方获胜的可能性相同。

  三、概率综合运用:

  概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

  初中数学概率的定义知识点8

  概率初步的有关概念

  (1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;

  (2)不可能事件是指一定不能发生的事件;

  (3)随机事件是指在一定条件下,可能发生也可能不发生的事件;

  (4)随机事件的可能性

  一般地,随机事件发生的可能性是有大小的,不同的.随机事件发生的可能性的大小有可能不同。

  (5)概率

  一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P。

  (6)可能性与概率的关系

  事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0。

  统计初步的有关概念

  总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象。

  样本:从总体中所抽取的一部分个体叫总体的一个样本。

  样本容量:样本中个体的数目。

  样本平均数:样本中所有个体的平均数叫样本平均数。

  总体平均数:总体中所有个体的平均数叫做总体平均数。

  统计学中的基本思想就是用样本对总体进行估计、推断,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除