比的应用教案
比的应用教案十篇
作为一名教职工,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?下面是小编整理的比的应用教案10篇,欢迎大家分享。
比的应用教案 篇1
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、探索方法,建立模型
1.理解题意
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习
自学数学书P49例题2,思考:
(1)你从例题2中得哪些信息?
(2) 1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的.比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习
1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
2.填空
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
比的应用教案 篇2
教学内容:
冀教版小学数学六年级上二单元第5课时 (比的应用)
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:
能正确、熟练地解答按比例分配的实际问题。
课前准备:
布置学生预习
教学过程:
一、创设情境
1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)
2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?
(组织交流)
师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)
二、初步感知
1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)
2、谁能用自己的语言说说3:2的具体含义。
3、谁能用算式表示两位各应分得多少元?
4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)
三、自主探究,合作研习
1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。
2、 此时用PPT出示“学习内容”“学习目标”和“导学提纲”
学习内容:冀教版小学数学六年级上册第19页。
学习目标
1、认识按比例分配的`实际问题,掌握这类实际问题的解答方法。
2、认识连比,理解三个数量连比的意义。
导学提纲
1、例1中“紫色与红色方块数的比是3:5”的含义是什么?
2、与同学说说例题中每种方法的解题思路。
3、你能画图理解这两种解题方法与同学交流吗?
4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?
5、“练一练”第3题是把1200千克培养料按怎样的比来分配?
学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。
(1)独立思考,尝试解答。
(2)小组交流,说说想法。
(3)组织交流,形成思路。
(4)选好内容,进行预展示。
四、集中展示
1、例1中“紫色与红色块数的比是3:5”的含义是什么?
预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。
(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,
茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。
2、展示例2的解题思路及方法……
3、展示“练一练3”的解题方法
小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?
预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。
五、反馈检测
1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?
2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?
3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?
4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。
六、课堂小结
学了这节课,你有什么收获?
七、课堂作业
20页,1、2、4、5。
板书设计:
按比例分配的解题方法
一要知道分配的数量,二要知道按怎样的比分配
比的应用教案 篇3
学情分析:
掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。
教学难点:
能根据实际情况,判断各部分量之间应该按怎样的比例来分配。
教学重点:
掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用
教学目标:
1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学策略:
引导学生将比转化成分数、份数,指导学生试算
教学准备:
学生课前作调查;
教学过程:
一、导入
1、看题目:“比的应用”,你想知道什么?
2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。
3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的.联系。今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?
二、新课
1、配置奶茶
星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。
师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。
(1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?
(2)小明想要配制220毫升的奶茶,
(a)先要解决什么问题?(奶和茶各取多少毫升?)
(b)请你先独立计算一下,奶和茶各取多少毫升?
(4)评价
(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?
(b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)
2、 计算电费
(1) 刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”
(a) 你觉得小明家应付多少元电费?你是怎么想的?
(b) 你为什么不同意他的想法?(不公平)
三、课堂小结
今天这堂课我们学习了“按比例分配”,你有什么收获?
比的应用教案 篇4
教学目标
使学生进一步认识按比例分配应用维他命和按比例分配应用题的特征和解题思路,能应用比的知识解答相关应用题。
进一步提高学生分析、推理等思维能力和应用比的知识解决问题的能力。
教学重难点
应用比的知识解答相关应用题。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习 二、应用题练习 三、 四、作业
1、说出下面每个比表示的具体含义。
苹果和梨的重量比是2∶3;
电视机和收音机的`台数比是5∶2;
学校老师与学生的人数比是1∶25。
2、口答
练习136;说说是怎样想的?
3、揭示课题
1、练习137
找一找相同点和不同点。
这两道题里的40棵各与比里哪个份数相对应?
这两道题,哪一道是按比例分配问题,哪一道不是?为什么?
按比和分数的关系想一想,这两道题会解答吗?
上下练习;
两题在解答时有什么不同?为什么(1)用40×3/5+3,而(2)用40×3/5来解答?
2、题组练习
(1)学校饲养组养的白兔和黑兔只数的比是5∶4。白兔有15只,黑兔有多少只?
(2)学校饲养组养的白兔和黑兔只数的比是5∶4。黑兔有12只,白兔有多少只?
说说有什么相同和不同的地方?
这两道题与按比例分配问题相同吗?有什么不同?
3、补充练习
出示:男生人数和女生人数的比是3∶4。
,女生有多少人?
1)学生说说上面比的具体含义。
2)口头补充成按比例分配应用题,并口头列式解答;
3)口头补充成已知一个数量,求另一个数量的应用题,并口头列式。
练习139
课后感受
同学们能应用比的知识解答相关应用题。
比的应用教案 篇5
教学要求
1. 使学生理解比的意义,认识比的各部分名称。会正确读写比。
2. 能正确的求比值,掌握比、除法和分数的关系。
3. 培养学生的比较、分析和抽象概括能力。
4、加强知识间的联系,使所学的知识系统化,渗透知识间相互联系的观点。
教学重点:理解比的意义
教学难点:理解比与分数、除法的关系。
教材分析:
这部分是学生学过分数与除法的关系,分数乘除法的意义,分数乘除法应用题的基础上教学的。由于分数与除法有着密切的联系,把比的知识放在分数除法的后面进行教学,加强了知识间的内在联系,又为学习其他知识以及比例的知识打好基础。
学情分析:
因为比的现象在生活中司空见惯,例如按一定的比稀释清洁剂,加工混凝土等等都用到比的知识。学生有生活的一些体验,因而可以从学生的兴趣出发展通过观察、比较、讨论,感受比的含义和特征。进而了解比与除法、分数的关系。
教学过程:
活动一
1、情境引入:出示一面国旗联合国旗的图案,我国第一艘载人飞船神州五号顺利升空。这是扬利伟在飞船上向人们展示的一面中华人民共和国和联合国国旗的图案,这个图案长是15厘米,宽是10厘米,根据这两个条件可以提出什么问题?(可提的问题很多,教师有选择地板书。①长是宽的几倍?②宽是长的几分之几?)
2、揭示课题:长是宽的几倍或者宽是长的'几分之几是我们用以前学过的除法对这面旗的长和宽进行比较的,今天我们再学习一种对两个数量进行比较的新的方法。这就是比(板书课题)
活动二:
1、教学比的意义。
有时我们也把这两个数量之间的关系说成:长和宽的比是15比10 ,宽与长的比是10比15。
2、进一步理解比的意义。
神舟五号进入运行轨道后,在距地350千米的高空做圆周运动,平均90分钟绕地球一周,大约运行42252千米。
你能提出什么问题?
你能用比表示路程和时间的关系吗?
3、小组讨论,你是怎么理解比的意义?
得出:两个数相除又叫两个数的比。
4、 比的写法和各部分名称及求比值的方法
介绍比号、比表示的方法、比的各部分名称,
①中间的:叫做比号,读的时候直接读比。
②比的各部分名称是什么呢?请大家看书p44的内容。
③介绍比各部分的名称,求比值方法,并板书。
5、比、除法、分数之间的关系
比、除法、分数有什么联系和区别?
联系:a:b= ab=
区别:比表示两个数关系的式子,分数是一个数,除法是一种运算。
那比的后项能不能为零呢?既然比的后项不能是0,而足球赛中常出现的2: 0的意义是什么?它是一个比吗?
足球赛中记录的2: 0的意义只表示某一队与另一队比赛各得的进球分数,不需表示两队所得分数的倍比关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。
比的另一种表示方法,就是写成分数形式。
(4)质疑:对本节课的内容你又不清楚的地方吗?
活动三
1. 填空:
(1)完成一项工程,甲8天完成,乙12天完成,甲乙两人工作时间的比是( ):( )。
(2) 如果a:b=c,那么a是比的( ),b是比的( ),c是比的( )。
(3)求比值:72:24,0.8:3.2,1.5小时:20分钟。
2、完成44页做一做内容。
3、根据下面的信息,你能想到那些问题?
六年一班有男生24人,女生26人。
张师傅5天加工300个零件。2枝钢笔11元。
比的应用教案 篇6
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。
学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
教学过程
活动一
1、课前调查
奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?
牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作
要配置220毫升奶茶,需要多少牛奶和多少红茶?
学生讨论,研究不同算法。
解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml
解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml
讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。
学生配置奶茶,共同品尝。
活动二
1、教学例2
书上例2,列式计算
2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。
活动三:
1、请帮忙配糖:
一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的'什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)
3、帮刘爷爷收电费
刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?
住户王家张家赵家李家
分电表度数40382953
3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?
4、总结全课
比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。
比的应用教案 篇7
人教版第十一册数学比的应用——按比例分配
教学内容:
小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。
教学目标:
1、使学生理解按比例分配的意义。
2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。
3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的'密切联系。
教学重点:掌握按比例分配应用题的解题方法。
教学难点:按比例分配应用题的实际应用。
教学准备:自制多媒体课件。实物投影仪。
教学过程():
一、复习引入:
1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?
学生汇报:
(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )
(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )
(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )
(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )
(5)女生人数占全班人数的( ),女生人数和全班人数的`比是( )
(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)
怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)
指出:按比例分配就是把一个数量按照一定的比来分配。
二、讲授新课
1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”
2、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)
小组汇报:
(1)六年级的保洁区面积是二年级的 倍
(2)二年级的保洁区面积是六年级的
(3)六年级的保洁区面积占总面积的
(4)二年级的保洁区面积占总面积的
……
3、课件演示
4、尝试解答:用你学过的知识解答例题,并说一说怎么想的`?(请学生板演)
方法一、3+2=5 100÷5=20(平方米)
20×3=60(平方米) 20×2=40(平方米)
方法二、3+2=5 100× =60(平方米)
100× =40(平方米)
5、这道题做得对不对呢?我们怎么检验?
①两个班级的面积相加,是否等于原来的总面积。
②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2
6、练习:
如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。
学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。
7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?
(1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。
(2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。
(3)问:315本书按照人数分配,就是按照怎样的比来分配呢?
(4)学生独立解答。
(5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。
8、小结:观察我们今天学习的按比例应用题有什么特点?
四、总结:
今天的学习你有什么收获呢?
五、布置作业:
练习十三的第1~4题。
比的应用教案 篇8
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板
教学过程:
一、基本练习
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的.比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?
把250按2比3分配,部分数各是多少
二、变式练习
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?
教学反思:
提高练习的灵活度,以及练习的形式。
比的应用教案 篇9
一、 创设情境:
1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班
3个2个
6个4个
30个20个
............
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班
30个20个
30个20个
............
方法二:画图
140个
方法三:列式
3+2=5
140=84(个)
140=56(个)
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、
比的'应用
3+2=5
140=84(个)
140=56(个)
答:大班分84个,小班分56个,比较合理
提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
比的应用教案 篇10
教学目标
使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。
教学重难点
运用比的知识解决实际问题。
教学准备
教学过程设计
教学内容
师生活动
备注
一、基本训练
二、应用题练习
三、小结
四、作业
1、口算
练习1310
2、说出下面每句话的具体意思。
一本书,已看页数和剩下页数的比是2∶1。
苹果筐数和橘子筐数的比是3∶4
一个长方形长和宽的'比是5∶3
男生与全班人数的比是4∶9
要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。
3、用比表示下列数量之间的关系。
合唱组人数是美术组的3倍。
大米袋数是面粉的1.5倍。
公牛头数是母牛的1/3
摩托车辆数是自行车的2/5。
1、解答应用题
配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3。要配制240千克这种黑火药,需要三种原料各多少千克?
上下练习;
问:已知什么,要求什么?这是什么应用题?关键是什么?
2、练习1311
问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?
要下求什么,再求长和宽?
上下练习。
3、练习1313
明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?
学生口述后解答。说想法。
能把(2)改编成分数应用题吗?
练习131213
课后感受
同学们能运用比的知识解决实际问题.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除