《平行四边形的面积》教案 平行四边形面积教案详案
《平行四边形的面积》教案15篇
作为一名教师,总归要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。如何把教案做到重点突出呢?以下是小编收集整理的《平行四边形的面积》教案,希望能够帮助到大家。
《平行四边形的面积》教案1
教学目标
知识与技能:
在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。
过程与方法:
通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。
情感态度与价值观:
通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。
教学重难点
教学重点:
掌握平行四边形的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学工具
多媒体课件,平行四边形纸片,剪刀,学具袋
教学过程
教学过程设计
1 、复习旧知
请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)
2 、情境引入
(一)、故事激趣
同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)
(二)、学生思考、猜测
学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积
3、探究新知
(一)利用方格,初步探究
1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。
课件出示:比较两个图形的大小,然后引进格子图。
师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)
2、同桌交流方法
3、生汇报想法
4、通过数方格你发现了什么?
生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等
5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?
如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?
(二)动手操作,深入探究
1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?
2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。
师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的`面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。
(板书:割补法)
3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。
4、展示学生作品:不同的方法将平行四边形变成长方形。
提问:观察拼出的长方形和原来的平行四边形,你发现了什么?
平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah
(边说边板书)
4 、学以致用
(一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
(板书:S=ah=6×4=24㎡)
(二)、课件出示练习题,学生独立完成。
1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?
2、填表
3、判断:
(1)平行四边形的底是7米,高是4米,面积是2 8米。()
(2)a=5分米,h=2米,S=100平方分米。()
4、下面对平行四边形面积的计算对吗?
6×3=18(平方米)()
5、下面对平行四边形面积的计算对吗?
8×7=56(平方分米)()
6、思考题:你有几种方法求下面图形的面积?
课后小结
回想一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推
板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
《平行四边形的面积》教案2
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)
平行四边形的面积计算公式是怎样推导出来的.?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的题目。
1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
《平行四边形的面积》教案3
教学内容:
人教版五年级上册第87―88页
教学目标:
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
平行四边形、学习单等。
教学过程:
课前布置预习第87――88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的.心情怎么样呢x
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗x谁来说一说x
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢x
生:长方形
师:对。长方形,那它的面积是指哪一部分呢x请一名学生上来指一指、画一画。它的面积计算公式呢x
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢x
生:平行四边形
师:平行四边形的面积怎么计算呢x今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
《平行四边形的面积》教案4
教学内容:
义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。
教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。
3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。
教具准备:多媒体课件、剪刀、平行四边形
教学过程:
一、情景引入,激趣导课
建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?
导入新课,揭示图形板书课题。
二、动手操作,探究新知
1、复习:复习平行四边形的底和高。
2、归纳意见,提出验证
学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。
3、学生汇报结果,展示操作过程
小组的代表来展示各组的操作方法。
4、演示过程,强化结果
多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?
5、填空、归纳公式
根据刚才的操作过程,完成填空题,并归纳板书公式。
把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的'(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。
6、提问质疑
学生阅读课本81页的内容,质疑。
三、分层练习,内化新知
1、用公式分别算一算两个停车位的面积。
2、计算相对应的底和高的平行四边形花圃面积。
3、计算平行四边形牌两面涂漆的面积。
4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。
四:课堂。
今天我们学习了什么?通过学习,你有那些新的收获呢?
板书设计:
平行四边形的面积
长方形的面积=长×宽
(转化)
平行四边形的面积=底×高
S=a×h
《平行四边形的面积》教案5
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的`长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
《平行四边形的面积》教案6
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的'推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程: 一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
《平行四边形的面积》教案7
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:
1、掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程.
教具准备:课件,平行四边形的纸片。
学具准备:学习卡,每个学生准备一个平行四边形。
教学过程:
一、导入
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:如果不用数方格,那能不能计算出平行四边形的`面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
三、巩固和应用
1、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
2、计算。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1、2题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
《平行四边形的面积》教学反思
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
《平行四边形的面积》教案8
教学目标:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。
3、培养学生的小组合作意识,发展学生的空间观念。
教学重难点:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教具准备:
教学课件、平行四边形教具和学具、剪刀等。
教学过程:
一、情境引入
师:这节课老师将和大家一起学习一个新知识,同学们有信心吗?
师:看到同学们精神饱满的样子,老师也有信心。让我们一起努力吧!
师:首先老师想考考大家,知道的同学请举手。
t1:你们认识哪些平面图形?
t2:你们认识老师手中的图形吗?
t3:(出示课件2)请同学们观察学校门前的两个花坛,它们分别是什么形状?
t4:哪个花坛面积大?你会计算它们的面积吗?(出示课件3)
师小结:(板书;长方形的面积=长×宽)
这节课我们就来学习平行四边形的面积。(板书:平行四边形的面积)
二、探究建模
(一)数格子法(出示课件4)
1、师:前面我们已经知道可以用数格子的方法得到一个图形的面积,看大屏,请同学们用数格子的方法数数出这两个图形的面积。注意一个方格代表1平方米,不满一格的都按半格计算。
t1:谁来汇报一下你数的结果?
2、师小结:刚才,我们用数格子的方法得到了这个平行四边形的面积,可是,在日常生活中,是不是每一个平行四边形的.面积都有方格让我们去数呢?(不是)所以说数方格的方法也不是任何时候都适用的。如果平行四边形的面积也能像长方形一样有它的面积计算公式就更好了,对不对?
那么在研究这个问题之前,让我们看大屏幕,继续观察这两个图形,并且完成第80页下方的表格。
t2:通过这个表格,你发现了什么呢?
3、师小结:是的,通过这个表格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
t3:根据你的发现,请同学们做个大胆的猜测,平行四边形的面积可以怎样计算?(师板书学生的猜测)
(二)转化法
1、用画图的方法验证猜想一。(平行四边形的面积=邻边之积)
学生画图,同桌交流,教师演示。
师小结:可见“平行四边形的面积=邻边之积”的猜测是不对的。
2、用“剪—平移—拼”的方法验证猜想二(平行四边形的面积=底×高)学生剪拼,同桌讨论,课件演示。(出示课件5)
t1:拼成的长方形和原来的平行四边形相比,什么变了,什么没有变?
t2:再看看,转化后的长方形的长与平行四边形的底,转化后的长方形的宽与平行四边形的高有什么关系?
生:转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高。
t3:那么,现在同学们知不知道平行四边形的面积可以怎样计算呢?
生:平行四边形的面积=底×高
t4:有没有不同的验证方法呢?(出示课件6)
师小结:其实,我们沿着平行四边形的任意一条高都能将一个平行四边形转化成长方形,因为转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高,所以,平行四边形的面积=底×高
(三)整理结论
1、师:我们一起读一下我们发现的结论。
刚才同学们不仅用不同的方法验证了两个猜想,并且用了转化的方法,真是了不起。
2、师:现在请同学们翻开书,自己看书学习81页倒数第2自然段的内容。
3、师:你学到了些什么?
4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah
师:有了平行四边形的面积计算公式,现在同学们就可以用它来计算了。
t5:现在同学们能知道这两个花坛哪个的面积大了吗?(出示课件7)
师小结:同学们学得真不错!我们鼓掌奖励自己吧!
师:下面老师再出几个题考考大家,敢挑战吗?
三、解释应用
1、计算平行四边形车位面积。(出示课件8)
t6:要计算一个平行四边形的面积需要知道哪些条件?
t7:(教师画图,平行四边形的底和高不对应)你能计算书这个平行四边想的面积吗?
2、选择条件计算平行四边形的面积。(出示课件9)
3、终极挑战。(出示课件10)
4、奖励题。知道平行四边形的面积和底,求高。(出示课件11)
四、课堂总结
通过这节课的学习你有哪些新的收获?
《平行四边形的面积》教案9
一、教学内容
北师大版小学数学五年级上册第25页
二、教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作,观察,比较活动,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3、引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
三、教学重点
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
四、教学难点
推导出平行四边形面积的计算公式。
五、教具
学具准备:自制长方形框架、面积测量纸、课件、平行四边形卡片、剪刀、三角板、直尺等。
六、教学过程
创设情境,导入新课
师:(出示教具)这是一个长方形框架,它的长是4厘米,宽是3厘米,这个长方形面积是多少?
师:拉动长方形(教师演示,如下图)现在变成了什么图形?(平行四边形)它的面积是多少?
教师在平行四边形的相邻两边标注上长度,对认为面积不变的同学质疑,你认为平行四边形的面积是怎样计算的?说说你的想法?xHAQX74J0X这个想法对不对呢?下面我们来研究一下。二:猜想验证,合作探究
1:用数方格的方法来算一算这个平行四边形的面积,教师演示操作给学生观察。数一数,你发现了什么?(平行四边形面积比长方形的面积小,用4×3计算不对,平行四边形面积不能用两条边相乘的方法计算。)LDAYtRyKfE上节课我们已经动手做过把平行边形转化成长方形,大家想出好多种方法,你还记得吗?(课件演示)在这样的转化中,你发现什么没有变?(面积没有变)出示问题:
①为什么把平行四边形转化成长方形面积不变,而刚才把长方形拉成平行四边形面积又变小了,你能发现什么?
②比较一下,两者有什么区别和联系?你能发现平行四边形的面积和哪些边有关系?小组讨论,教师巡视指导。汇报交流,教师总结。(把平行四边形转化成长方形的时候底没有变,高变成了长方形的宽,也没有变短。而长方形拉成平行四边形的时候,底没有变,但宽没有变成高,高比宽短了。两者底都没有变,高不变,面积就不变,高变小,面积就变小,说明平行四边形的面积与底和高有关系。)
2:那么怎样计算平行四边形的面积呢?拿出学具(二个平行四边形图形)要求:做出平行四边形的高,量出表中边的长(取整厘米数),用数方格的方式计算出二个图形的面积,完成表格。完成后想一想,平行四边形面积如何计算?dvzfvkwMI1图形图一图二底边长底边上的高面积(通过数方格我们发现这个平行四边形的面积等于底乘高)
3:你能发现平行四边形面积的计算公式吗?平行四边形的面积公式与长方形的面积公式有联系吗?(平行四边形的面积=底×高。长方形的面积=长×宽,长方形的长与平行四边形的底相等,这个长方形的.宽与平行四边形的高相等。)rqyn14ZNXI如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,用字母表示平行四边形面积计算公式就是:EmxvxOtOco S=ah
七、应用实践,巩固提高
问:要求平行四边形的面积必须要知道什么条件呢?(底和高)
1、计算下面每个平行四边形的面积:2cm 5.7cm 11.5dm 2.6cm 15 dm
2、选一选要计算下面这个平行四边形的面积,下面几个算式,你选哪个?为什么?
3、填一填⑴一个的长是是3cm,4厘米7.5厘米A、7.5×4C、7.5×66厘米5厘米长方形5cm,高这个长B、5×4D、5×6方形的面积是()平方厘米。⑵一个平行四边形的底是8m,高是5m,这个平行四边形的面积是()平方米。 ⑶一个平行四边形的面积是60平方分米,高是12分米,这个平行四边形的底是()分米。
4、一块平行四边地,底长150m,高80m,这块地有多少公顷?在这块地里共收小麦7680千克,平均每公顷收小麦多少千克?
八、总结收获,布置作业
这节课你学到了什么知识,你能小结一下吗?你还有什么疑惑?还有什么遗憾?作业:第26页练一练1、2、3题。
《平行四边形的面积》教案10
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的.高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
《平行四边形的面积》教案11
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的`理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
《平行四边形的面积》教案12
[教学内容]
人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程
设计思路
一、以景置疑,引出课题
1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习平行四边形的面积,板书课题。
以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的面积是一样的.,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。
通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,()的面积大。
A、甲B、乙C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。
A、变大B、变小C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。
分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?
自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
《平行四边形的面积》教案13
教学目标
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点
理解公式并正确计算平行四边形的面积.
教学难点
理解平行四边形面积公式的推导过程.
教学过程
复习引入
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).
(二)观察老师出示的几个平行四边形,指出它的底和高.
(三)教师出示一个长方形和一个平行四边形.
1.猜测:哪一个图形面积比较大?大多少平方厘米呢?
2.要想我们准确的答案,就要用到今天所学的知识——“平行四边形面积的计算”
板书课题:平行四边形面积的计算
二、指导探究
(一)数方格方法
1.小组合作讨论:
(1)图上标的`厘米表示什么?每个小方格表示1平方厘米为什么?
(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
(4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
2.集体订正
3.请同学评价一下用数方格的方法求平行四边形的面积.
学生:麻烦,有局限性.
(二)探索平行四边形面积的计算公式.
1.教师谈话
不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.
2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
3.学生到前面演示转化的方法.
4.演示课件:平行四边形的面积
5.组织学生讨论:
(1)平行四边形和转化后的长方形有什么关系?
(2)怎样计算平行四边形的面积?为什么?
(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?
(三)应用
例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.8×3.5≈17(平方米)
答:它的面积约是17平方米.
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
(一)列式并计算面积
1.底=8厘米,高=5厘米,
2.底=10米,高=4米,
3.底=20分米,高=7分米
(二)说出下面每个平行四边形的底和高,计算它们的面积.
(三)应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
(四)量出你手里平行四边形学具的底和高,并计算出它的面积.
教案点评:
该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。
《平行四边形的面积》教案14
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的.面积必须知道哪两个条件?
(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
《平行四边形的面积》教案15
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的'高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程 一、情感交流 二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习 四、小结本课 五、课堂作业 板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除