高二数学教案 高二数学教案(人教版)

高二数学教案 15篇

  作为一位无私奉献的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?下面是小编为大家收集的高二数学教案 ,欢迎大家分享。

高二数学教案 1

  教学目标

  巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值。

  重点难点

  理解二元一次不等式表示平面区域是教学重点。

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

  教学步骤

  

  我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用。

  

  先讨论下面的问题

  设,式中变量x、y满足下列条件

  ①求z的值和最小值。

  我们先画出不等式组①表示的平面区域,如图中内部且包括边界。点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上。

  作一组和平等的直线

  可知,当l在的`右上方时,直线l上的点满足。

  即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以

  在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件。

  是欲达到值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的值和最小值问题。

  线性约束条件除了用一次不等式表示外,有时也有一次方程表示。

  一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解。

高二数学教案 2

  目的要求:

  1.复习巩固求曲线的方程的基本步骤;

  2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;

  3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。

  教学重点、难点:

  方程的求法教学方法:讲练结合、讨论法

  教学过程:

  一、学点聚集:

  1.曲线C的方程是f(x,y)=0(或方程f(x,y)=0的曲线是C)实质是

  ①曲线C上任一点的坐标都是方程f(x,y)=0的解

  ②以方程f(x,y)=0的解为坐标的点都是曲线C上的点

  2.求曲线方程的基本步骤

  ①建系设点;

  ②寻等列式;

  ③代换(坐标化);

  ④化简;

  ⑤证明(若第四步为恒等变形,则这一步骤可省略)

  二、基础训练题:

  221.方程x-y=0的曲线是()

  A.一条直线和一条双曲线B.两个点C.两条直线D.以上都不对

  2.如图,曲线的.方程是()

  A.x?y?0 B.x?y?0 C.

  xy?1 D.

  x?1 y3.到原点距离为6的点的轨迹方程是。

  4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

  三、例题讲解:

  例1:已知一条曲线在y轴右方,它上面的每一点到A?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

  例2:已知P(1,3)过P作两条互相垂直的直线l

  1、l2,它们分别和x轴、y轴交于B、C两点,求线段BC的中点的轨迹方程。

  2例3:已知曲线y=x+1和定点A(3,1),B为曲线上任一点,点P在线段AB上,且有BP∶PA=1∶2,当点B在曲线上运动时,求点P的轨迹方程。

  巩固练习:

  1.长为4的线段AB的两个端点分别在x轴和y轴上滑动,求AB中点M的轨迹方程。

  22.已知△ABC中,B(-2,0),C(2,0)顶点A在抛物线y=x+1移动,求△ABC的重心G的轨迹方程。

  思考题:

  已知B(-3,0),C(3,0)且三角形ABC中BC边上的高为3,求三角形ABC的垂心H的轨迹方程。

  小结:

  1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。

  2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。

  作业:

  苏大练习第57页例3,教材第72页第3题、第7题。

高二数学教案 3

  简单的逻辑联结词

  (一)教学目标

  1.知识与技能目标:

  (1) 掌握逻辑联结词且的含义

  (2) 正确应用逻辑联结词且解决问题

  (3) 掌握真值表并会应用真值表解决问题

  2.过程与方法目标:

  在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  3.情感态度价值观目标:

  激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

  (二)教学重点与难点

  重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。

  难点:

  1、正确理解命题Pq真假的规定和判定.

  2、简洁、准确地表述命题Pq.

  教具准备:与教材内容相关的资料。

  教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  (三)教学过程

  学生探究过程:

  1、引入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。

  为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)

  2、思考、分析

  问题1:下列各组命题中,三个命题间有什么关系?

  ①12能被3整除;

  ②12能被4整除;

  ③12能被3整除且能被4整除。

  学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。

  问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?

  例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

  3、归纳定义

  一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。

  命题pq即命题p且q中的且字与下面命题中的且 字的含义相同吗?

  若 xA且xB,则xB。

  定义中的且字与命题中的且 字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。

  注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分.

  4、命题pq的真假的规定

  你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?

  引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。

  例如:在上面的'例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

  一般地,我们规定:

  当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。

  5、例题

  例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。

  (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

  (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

  (3)p:35是15的倍数,q:35是7的倍数.

  解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成平行四边形的对角线互相平分且相等.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (2)pq:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成菱形的对角线互相垂直且平分.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (3)pq:35是15的倍数且35是7的倍数. 也可简写成35是15的倍数且是7的倍数.

  由于p是假命题, q是真命题,所以pq是假命题。

  说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变.

  例2:用逻辑联结词且改写下列命题,并判断它们的真假。

  (1)1既是奇数,又是素数;

  (2)2是素数且3是素数;

  6.巩固练习 :P20 练习第1 , 2题

  7.教学反思:

  (1)掌握逻辑联结词且的含义

  (2)正确应用逻辑联结词且解决问题

高二数学教案 4

  课题:2。1曲线与方程

  课时:01

  课型:新授课

  一、教学目标

  (一)知识教学点

  使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。

  (二)能力训练点

  通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

  (三)学科渗透点

  通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

  二、教材分析

  1、重点:求动点的轨迹方程的常用技巧与方法。

  (解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)

  2、难点:作相关点法求动点的轨迹方法。

  (解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)

  教具准备:与教材内容相关的资料。

  教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  三、教学过程

  (一)复习引入

  大家知道,平面解析几何研究的主要问题是:

  (1)根据已知条件,求出表示平面曲线的方程;

  (2)通过方程,研究平面曲线的性质。

  我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。

  (二)几种常见求轨迹方程的方法

  1、直接法

  由题设所给(或通过分析图形的几何性质而得出)的'动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

  例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;

  (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。

  对(1)分析:

  动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。

  解:设动点P(x,y),则有|OP|=2R或|OP|=0。

  即x2+y2=4R2或x2+y2=0。

  故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。

  对(2)分析:

  题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:

  设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,

  其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点)。

  2、定义法

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

  直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。

  分析:

  ∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。

  又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

  故P点到两定点距离之和是定值,可用椭圆定义

  写出P点的轨迹方程。

  解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。

  又P在半径OQ上。∴|PO|+|PQ|=2。

  由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。

  3、相关点法

  若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。

  例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。

  分析:

  P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。

  解:设点P(x,y),且设点B(x0,y0)

  ∵BP∶PA=1∶2,且P为线段AB的内分点。

  4、待定系数法

  求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。

  例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲

  曲线方程。

  分析:

  因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方

  ax2—4b2x+a2b2=0

  ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。

  ∴△=16b4—4a4b2=0,即a2=2b。

  (以下由学生完成)

  由弦长公式得:

  即a2b2=4b2—a2。

  (三)巩固练习

  用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。

  1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的

  2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?

  3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。

  答案:

  义法)

  由中点坐标公式得:

  (四)、教学反思

  求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。

  四、布置作业

  1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。

  2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。

  3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。

  作业答案:

  1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。

  2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。

高二数学教案 5

  一、学习者特征分析

  本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。

  二、教学目标

  知识与技能

  1. 体会数学思维中的分析法和综合法;

  2. 会用分析法和综合法去解决问题。

  过程与方法

  1. 通过对分析法综合法的学习,培养学生的数学思维能力;

  2. 培养学生的数学阅读和理解能力;

  3. 培养学生的评价和反思能力。

  情感态度与价值观

  1. 交流、分享运用数学思维解决问题的喜悦;

  2. 提高学生学习数学的兴趣;

  3. 增强学习数学的信心。

  三、教学内容

  本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。

  四、教学策略的设计

  1. 情境的设计

  情境描述

  情境简要描述

  呈现方式

  趣味问题

  从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?

  网页

  2. 教学资源的设计

  资源类型

  资源内容简要描述

  资源来源

  相关故事

  通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。

  网上下载

  学习网站

  专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。

  自行制作

  3. 教学工具:计算机

  4. 教学策略:自主探究学习策略,任务驱动策略、反思策略

  5. 教学环境:网络教室

  五、教学流程设计

  1、创设情景,吸引学生注意

  教师活动

  学生活动

  资源/工具

  设计思想

  提出“推理救命问题”

  积极思考,寻找方法

  学习网站

  以具有趣味性的故事入手,吸引学生的注意,点明本节课的目的。

  2、自主探究,获取知识

  教师活动

  学生活动

  资源/工具

  设计思想

  1、初试牛刀:让学生试做思维训练题。

  2、挑战高考题:在高考题中充分体现分析法,综合法。

  3、举一反三:让学生学会总结

  学以致用:

  4、把本节的'方法应用到解决数学问题中。

  积极思考,互相交流,发现问题,解决问题。

  学习网站

  1、让学生在轻松活泼的氛围下带着问题,自主、积极地学习,有助于培养学生的自我探索的能力。

  2、超级链接控制性好,交互性强,可让学生在较短的时间内收集积累更多的信息,拓宽学生的知识面。

  3、培养学生收集信息、处理信息的能力。

  3、总结概念,深化概念

  教师活动

  学生活动

  资源/工具

  设计思想

  归纳本节的方法:分析法和综合法。并指出:数学思维的训练不单只是一节简单的专题课,我们的同学在平常多留心身边事物,多思考问题,不断提高数学思维能力。

  体会分析法和综合法的概念,并在论坛上发表自己对概念的理解。

  学习网站论坛

  通过对具体问题的概念化,加深对概念的理解。

  4、自主交流,知识迁移

  教师活动

  学生活动

  资源/工具

  设计思想

  提出宝藏问题并指导学生利用BBs论坛进行讨论

  学生在论坛里充分地发表自己的看法

  学习网站论坛

  通过自主交流,增强分析问题的能力和解决问题的能力

  5、在线测试,评价及反馈

  教师活动

  学生活动

  资源/工具

  设计思想

  利用学习网站制作一些简单的训练题目

  独立完成在线的测试

  学习网站

  及时反馈课堂学习效果。

  6、课后任务

  教师活动

  学生活动

  资源/工具

  设计思想

  布置课后任务:在网络上收集推理分析的相关例子,在学习网站的论坛上讨论。

  记录要求,并在课后完成。

  网络资源和学习网站

  通过课后的任务训练,进一步提高学生的数学思维能力,把思维训练延续到课堂外。

高二数学教案 6

  学习目标:

  1、了解本章的学习的内容以及学习思想方法

  2、能叙述随机变量的定义

  3、能说出随机变量与函数的关系,

  4、能够把一个随机试验结果用随机变量表示

  重点:能够把一个随机试验结果用随机变量表示

  难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

  环节一:随机变量的定义

  1.通过生活中的一些随机现象,能够概括出随机变量的定义

  2能叙述随机变量的定义

  3能说出随机变量与函数的区别与联系

  一、阅读课本33页问题提出和分析理解,回答下列问题?

  1、了解一个随机现象的规律具体指的是什么?

  2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

  总结:

  3、随机变量

  (1)定义:

  这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的

  到的映射。

  (2)表示:随机变量常用大写字母.等表示.

  (3)随机变量与函数的区别与联系

  函数随机变量

  自变量

  因变量

  因变量的范围

  相同点都是映射都是映射

  环节二随机变量的应用

  1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件

  例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

  变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果

  例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变

  量,分别说明下列集合所代表的随机事件:

  (1){X=0}(2){X=1}

  (3){X<2}(4){x>0}

  变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的`随机试验的结果.

  练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

  (1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;

  (2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;

  小结(对标)

高二数学教案 7

  一、教材分析

  推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。

  二、教学目标

  (1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式

  (2)过程与方法:了解合情推理和演绎推理的区别与联系

  (3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。

  三、教学重点难点

  教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系

  教学难点:演绎推理的应用

  四、教学方法:探究法

  五、课时安排:1课时

  六、教学过程

  1. 填一填:

  ① 所有的'金属都能够导电,铜是金属,所以 ;

  ② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;

  ③ 奇数都不能被2整除,20xx是奇数,所以 .

  2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?

  3.小结:

  ① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.

  要点:由_____到_____的推理.

  ② 讨论:演绎推理与合情推理有什么区别?

  ③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?

  小结:三段论是演绎推理的一般模式:

  第一段:_________________________________________;

  第二段:_________________________________________;

  第三段:____________________________________________.

  ④ 举例:举出一些用三段论推理的例子.

  例1:证明函数 在 上是增函数.

  例2:在锐角三角形ABC中, ,D,E是垂足. 求证:AB的中点M到D,E的距离相等.

  当堂检测:

  讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?

  讨论:演绎推理怎样才能使得结论正确?

  比较:合情推理与演绎推理的区别与联系?

  课堂小结

  课后练习与提高

  1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )

  A.一般的原理原则; B.特定的命题;

  C.一般的命题; D.定理、公式.

  2.因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论).上面的推理的错误是( )

  A.大前提错导致结论错; B.小前提错导致结论错;

  C.推理形式错导致结论错; D.大前提和小前提都错导致结论错.

  3.下面几种推理过程是演绎推理的是( )

  A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则B =180B.由平面三角形的性质,推测空间四面体的性质;.

  4.补充下列推理的三段论:

  (1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.

  (2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数.

  七、板书设计

  八、教学反思

高二数学教案 8

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的.向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

高二数学教案 9

  一、课前准备:

  

  1.对数:

  (1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.

  (2)以10为底的对数记为________,以 为底的对数记为_______.

  (3) , .

  2.对数的运算性质:

  (1)如果 ,那么 ,

  .

  (2)对数的换底公式: .

  3.对数函数:

  一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.

  4.对数函数的图像与性质:

  a1 0

  图象性

  质 定义域:___________

  值域:_____________

  过点(1,0),即当x=1时,y=0

  x(0,1)时_________

  x(1,+)时________ x(0,1)时_________

  x(1,+)时________

  在___________上是增函数 在__________上是减函数

  

  1. 的定义域为_________.

  2.化简: .

  3.不等式 的解集为________________.

  4.利用对数的换底公式计算: .

  5.函数 的.奇偶性是____________.

  6.对于任意的 ,若函数 ,则 与 的大小关系是___________________________.

  二、课堂活动:

  填空题:

  (1) .

  (2)比较 与 的大小为___________.

  (3)如果函数 ,那么 的最大值是_____________.

  (4)函数 的奇偶性是___________.

  求函数 的定义域和值域.

  已知函数 满足 .

  (1)求 的解析式;

  (2)判断 的奇偶性;

  (3)解不等式 .

  课堂小结

  三、课后作业

  1. .略

  2.函数 的定义域为_______________.

  3.函数 的值域是_____________.

  4.若 ,则 的取值范围是_____________.

  5.设 则 的大小关系是_____________.

  6.设函数 ,若 ,则 的取值范围为_________________.

  7.当 时,不等式 恒成立,则 的取值范围为______________.

  8.函数 在区间 上的值域为 ,则 的最小值为____________.

  9.已知 .

  (1)求 的定义域;

  (2)判断 的奇偶性并予以证明;

  (3)求使 的 的取值范围.

  10.对于函数 ,回答下列问题:

  (1)若 的定义域为 ,求实数 的取值范围;

  (2)若 的值域为 ,求实数 的取值范围;

  (3)若函数 在 内有意义,求实数 的取值范围.

  四、纠错分析

  错题卡 题 号 错 题 原 因 分 析

  高二数学教案:对数与对数函数

  一、课前准备:

  

  1.对数

  (1)以 为底的 的对数, ,底数,真数.

  (2) , .

  (3)0,1.

  2.对数的运算性质

  (1) , , .

  (2) .

  3.对数函数

  , .

  4.对数函数的图像与性质

  a1 0

  图象性质 定义域:(0,+)

  值域:R

  过点(1,0),即当x=1时,y=0

  x(0,1)时y0

  x(1,+)时y0 x(0,1)时y0

  x(1,+)时y0

  在(0,+)上是增函数 在(0,+)上是减函数

  

  1. 2. 3.

  4. 5.奇函数 6. .

  二、课堂活动:

  填空题:

  (1)3.

  (2) .

  (3)0.

  (4)奇函数.

  解:由 得 .所以函数 的定义域是(0,1).

  因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .

  解:(1) ,所以 .

  (2)定义域(-3,3)关于原点对称,所以

  ,所以 为奇函数.

  (3) ,所以当 时, 解得

  当 时, 解得 .

高二数学教案 10

  一、课前预习目标

  理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

  二、预习内容

  1、双曲线的几何性质及初步运用。

  类比椭圆的.几何性质。

  2。双曲线的渐近线方程的导出和论证。

  观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  课内探究

  1、椭圆与双曲线的几何性质异同点分析

  2、描述双曲线的渐进线的作用及特征

  3、描述双曲线的离心率的作用及特征

  4、例、练习尝试训练:

  例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

  解:

  解:

  5、双曲线的第二定义

  1)。定义(由学生归纳给出)

  2)。说明

  (七)小结(由学生课后完成)

  将双曲线的几何性质按两种标准方程形式列表小结。

  作业:

  1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

  (1)16x2—9y2=144;

  (2)16x2—9y2=—144。

  2。求双曲线的标准方程:

  (1)实轴的长是10,虚轴长是8,焦点在x轴上;

  (2)焦距是10,虚轴长是8,焦点在y轴上;

  曲线的方程。

  点到两准线及右焦点的距离。

高二数学教案 11

  教学目的:

  1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

  2、了解线段垂直平分线的轨迹问题。

  3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。

  教学重点:

  线段的垂直平分线性质定理及逆定理的引入证明及运用。

  教学难点:

  线段的垂直平分线性质定理及逆定理的关系。

  教学关键:

  1、垂直平分线上所有的点和线段两端点的距离相等。

  2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

  教具:投影仪及投影胶片。

  教学过程:

  一、提问

  1、角平分线的性质定理及逆定理是什么?

  2、怎样做一条线段的垂直平分线?

  二、新课

  1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

  2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

  通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

  定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。

  例题:

  已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

  求证:PA=PB

  如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

  :证明:∵PC⊥AB(已知)

  ∴∠PCA=∠PCB(垂直的定义)

  在ΔPCA和ΔPCB中

  ∴ΔPCA≌ΔPCB(SAS)

  即:PA=PB(全等三角形的对应边相等)。

  反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

  过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)

  ∴EF是等腰三角型ΔPAB的顶角平分线

  ∴EF是AB的垂直平分线(等腰三角形三线合一性质)

  ∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。

  线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

  三、举例(用幻灯展示)

  例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

  证明:∵点P在线段AB的垂直平分线上

  ∴PA=PB

  同理PB=PC

  ∴PA=PB=PC

  由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

  四、小结

  正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

  《教案设计说明》

  线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的'距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。

高二数学教案 12

  [新知初探]

  1、向量的数乘运算

  (1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:

  ①|λa|=|λ||a|;

  ②当λ>0时,λa的方向与a的方向相同;

  当λ<0时,λa的'方向与a的方向相反。

  (2)运算律:设λ,μ为任意实数,则有:

  ①λ(μa)=(λμ)a;

  ②(λ+μ)a=λa+μa;

  ③λ(a+b)=λa+λb;

  特别地,有(—λ)a=—(λa)=λ(—a);

  λ(a—b)=λa—λb。

  [点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ—a均无法运算。

  (2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0。

  2、向量共线的条件

  向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=λa。

  [点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不,任一实数λ都能使b=λa成立。

  (2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数。

  3、向量的线性运算

  向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。

  [小试身手]

  1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

  (1)λa的方向与a的方向一致。()

  (2)共线向量定理中,条件a≠0可以去掉。()

  (3)对于任意实数m和向量a,b,若ma=mb,则a=b。()

  答案:(1)×(2)×(3)×

  2、若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()

  A、b=2aB、b=—2a

  C、a=2bD、a=—2b

  答案:A

  3、在四边形ABCD中,若=—12,则此四边形是()

  A、平行四边形B、菱形

  C、梯形D、矩形

  答案:C

  4、化简:2(3a+4b)—7a=XXXXXX。

  答案:—a+8b

  向量的线性运算

  [例1]化简下列各式:

  (1)3(6a+b)—9a+13b;

  (2)12?3a+2b?—a+12b—212a+38b;

  (3)2(5a—4b+c)—3(a—3b+c)—7a。

  [解](1)原式=18a+3b—9a—3b=9a。

  (2)原式=122a+32b—a—34b=a+34b—a—34b=0。

  (3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。

  向量线性运算的方法

  向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量。

高二数学教案 13

  (1)平面向量基本定理的内容是什么?

  (2)如何定义平面向量基底?

  (3)两向量夹角的定义是什么?如何定义向量的垂直?

  [新知初探]

  1、平面向量基本定理

  条件e1,e2是同一平面内的两个不共线向量

  结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2

  基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

  [点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。

  2、向量的夹角

  条件两个非零向量a和b

  产生过程

  作向量=a,=b,则∠AOB叫做向量a与b的夹角

  范围0°≤θ≤180°

  特殊情况θ=0°a与b同向

  θ=90°a与b垂直,记作a⊥b

  θ=180°a与b反向

  [点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。

  [小试身手]

  1、判断下列命题是否正确。(正确的打“√”,错误的.打“×”)

  (1)任意两个向量都可以作为基底。()

  (2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()

  (3)零向量不可以作为基底中的向量。()

  答案:(1)×(2)√(3)√

  2、若向量a,b的夹角为30°,则向量—a,—b的夹角为()

  A、60°B、30°

  C、120°D、150°

  答案:B

  3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()

  A、e1,e2B、e1+e2,3e1+3e2

  C、e1,5e2D、e1,e1+e2

  答案:B

  4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。

  答案:135°

  用基底表示向量

  [典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。

  [解]法一:由题意知,==12=12a,==12=12b。

  所以=+=—=12a—12b,

  =+=12a+12b,

  法二:设=x,=y,则==y,

  又+=,—=,则x+y=a,y—x=b,

  所以x=12a—12b,y=12a+12b,

  即=12a—12b,=12a+12b。

  用基底表示向量的方法

  将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。

  [活学活用]

  如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。

  解:∵AD∥BC,且AD=13BC,

  ∴=13=13b。

  ∵E为AD的中点,

  ∴==12=16b。

  ∵=12,∴=12b,

  ∴=++

  =—16b—a+12b=13b—a,

  =+=—16b+13b—a=16b—a,

  =+=—(+)

  =—(+)=—16b—a+12b

  =a—23b。

高二数学教案 14

  一、教学目标

  本课时的教学目标为:①借助直角坐标系建立复平面,掌握复数的几何形式和向量表示;②经历复平面上复数的“形化”过程,理解复数与复平面上的点、向量之间的一一对应关系;③感悟数学的释义:数学是研究空间形式和数量关系的科学、笔者认为,教学目标总体设置得较为适切,符合三维框架、修改:“掌握复数的几何形式和向量表示”改为“掌握在复平面上复数的点表示和向量表示”。

  二、教学重点

  本课时的教学重点为:复数的坐标表示:几何形式与向量表示、教学重点设置得较为适切,部分用词表达配合教学目标一并修改、修改:复数的坐标表示:点表示与向量表示。

  三、教学难点

  本课时的教学难点为:复数的代数形式、几何形式及向量表示的“同一性”、首先,“同一性”说法有待商榷,这个词有着严格的定义,使用时需谨慎、其次,经过思考,复数的代数表示、点表示及向量表示之间的互相转化才是本课时的教学难点。

  四、教学过程

  (一)类比引入

  本环节通过实数在数轴上的“形化”表示,类比至复数,引出复数的“几何形式”:复平面与点、但在设问中,有一提问值得商榷:实数的几何形式是什么?此提问较为唐突,在试讲课与正式课中学生均表示难以理解,原因如下、①学生最近发展区中未具备“实数的几何形式”,②实数的几何形式是教师引导学生对数的一种有高度的认识与表达,属于理解层面、经过思考,修改:①如何“画”实数?;②对学生直接陈述:我们知道,每一个实数都有数轴上唯一确定的一个点和它对应;反过来,数轴上的每一个点也有唯一的一个实数和它对应。

  (二)概念新授

  本环节给出复平面的定义及相关概念,并且帮助学生形成复数与复平面上点两者间的一一对应关系、教学设计中对概念的注释是:表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示虚数的点在四个象限或虚轴上,表示实数的点为原点、经过思考,修改:表示实数的点都在实轴上、实轴上的点表示全体实数;表示纯虚数的点都在虚轴上、虚轴上的点表示全体纯虚数与实数;表示虚数的点不在实轴上;实数与原点一一对应。

  (三)例题体验

  本环节通过三个例题体验,落实本课时的教学重点之一:复数的坐标表示:点表示;突破本课时的教学难点:复数的代数表示、点表示及向量表示之间的互相转化、例题1对课本例题作了改编,此例题的设计意图为从复平面上的点出发,去表示对应的复数,并且蕴含了计数原理中的乘法原理、值得一提的是,在课堂教学实施过程中,学生很清晰地建立起了两者之间的转化关系,并且使用了乘法原理、例题2的设计意图是从复数出发去在复平面上表示对应的点,而例题3的设计意图是从单个复数与其在复平面上的对应点之间的转化到两个复数与其在复平面上对应点之间的互相转化、例题2与例题3的设计符合学生的认知规律,但是在教学过程中没有配以图形来帮助学生理解,这是整个教学过程中的最大不足。

  (四)概念提升

  本环节继复数在复平面上的点表示之后,给出复数的'向量表示,呈现了完整的复数的坐标表示、学生已经建构起复数集中的复数与复平面上的点之间的一一对应关系,结合他们的最近发展区:建立了直角坐标系的平面中的任意点均与唯一的位置向量一一对应,从而较为顺利地架构起复数与向量的一一对应关系、设计的例题是由笔者改编的,整合了向量与复数、点与复数以及向量与点之间的互相转化,巩固三者之间的一一对应关系、值得一提的是,设计的第3小问具有开放性,启发学生去探究由向量加法的坐标表示引出复数加法法则,在课堂教学实践中,已有学生产生这样的思考。

  在之后的教研组研评课中,老师们给出了对这节课的认可与中肯的建议,让笔者受益匪浅,笔者经过思考已经在上文中的各环节修改处得以体现落实、不过仍然有一点困惑,有老师提出甚至笔者备课时也有这样的犹豫:本课时是否将下一课时“复数的模”一并给出、笔者在不断思考教材分割成两课时的用意,结合试讲与上课的两次实践也说明,笔者所在学校的学生更适合这样的分割,第一课时让学生从不同角度感受复数,第二课时用模来巩固深化复数的坐标表示、本课时的课题是复数的坐标表示,蕴含了点坐标表示与向量坐标表示两块,第一课时先打开认识的视角,第二课时通过模来深入体验、

  当然教无定法,根据学情、因材施教,在理解教材设计意图的基础上对教材进行科学合理的改编也是很有必要的。

高二数学教案 15

  一、教学目标

  1.知识与技能

  (1)理解流程图的顺序结构和选择结构。

  (2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

  2.过程与方法

  学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

  3情感、态度与价值观

  学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

  二、教学重点、难点

  重点:算法的顺序结构与选择结构。

  难点:用含有选择结构的流程图表示算法。

  三、学法与教学用具

  学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

  教学用具:尺规作图工具,多媒体。

  四、教学思路

  (一)、问题引入 揭示课题

  例1 尺规作图,确定线段的一个5等分点。

  要求:同桌一人作图,一人写算法,并请学生说出答案。

  提问:用文字语言写出算法有何感受?

  引导学生体验到:显得冗长,不方便、不简洁。

  教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

  本节要学习的是顺序结构与选择结构。

  右图即是同流程图表示的算法。

  (二)、观察类比 理解课题

  1、 投影介绍流程图的符号、名称及功能说明。

  符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移

  输入输出框 输入输出操作指向线 指向另一操作

  2、讲授顺序结构及选择结构的概念及流程图

  (1)顺序结构

  依照步骤依次执行的一个算法

  流程图:

  (2)选择结构

  对条件进行判断来决定后面的步骤的结构

  流程图:

  3.用自然语言表示算法与用流程图表示算法的比较

  (1)半径为r的圆的面积公式 当r=10时写出计算圆的'面积的算法,并画出流程图。

  解:

  算法(自然语言)

  ①把10赋与r

  ②用公式 求s

  ③输出s

  流程图

  (2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

  算法:(语言表示)

  ① 输入X值

  ②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

  ③输出Y的值

  流程图

  小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

  学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

  (三)模仿操作 经历课题

  1.用流程图表示确定线段A.B的一个16等分点

  2.分析讲解例2;

  分析:

  思考:有多少个选择结构?相应的流程图应如何表示?

  流程图:

  (四)归纳小结 巩固课题

  1.顺序结构和选择结构的模式是怎样的?

  2.怎样用流程图表示算法。

  (五)练习P99 2

  (六)作业P99 1

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除