式与方程知识点

这是式与方程知识点,是优秀的数学教案文章,供老师家长们参考学习。

式与方程知识点第 1 篇

  这周我讲了《一元一次不等式》,在讲《不等式的性质》这一节课,一开始我的设计思路是复习不等式的概念及不等式的解,然而进行不等式的3个性质教学,在学完3个性质后马上讲不等式的解集及在数轴上表示不等式的解集,最后才进行巩固练习。但我在第一个班教学过程中发现学生对不等式的解集的概念不理解,不知道如何在数轴上表示不等式的解集。

  因此,我马上调整教学思路,在下个班让学生先复习不等式的概念及不等式的解,然后进行不等式的3个性质教学,讲完3个性质后马上让学生做3个性质的运用的相关练习,最后再讲不等式的解集及在数轴上表示不等式的解集。

  通过这样调整教学思路,我发现学生进一步理解了不等式的概念及不等式的解,理解了不等式的3个性质并会运用这3个性质去解决有关的数学问题。不等式的解集是一个比较抽象的概念,但通过练习学生能理解什么是不等式的解集,因为不等式的解集是由学生自己解出来的,在学生理解不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合让学生加深对不等式的解集的'认识,为下一节解不等式做铺垫。

  我的反思和经验是:

  1、课前充分准备是保证。从怎么引入怎么引导学生探索性质都进行充分的准备

  2、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于我对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到这类的题目都卡住了。

  3、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,其实在这里可以训练学生的数学符号语言能力。

  4、上课多注意学生的反应。根据学生的课堂反应及时的调整教学思路。

式与方程知识点第 2 篇

  等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。

  一、猜想入手,激发学习兴趣

  猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。

  二、操作验证,培养探索能力

  在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

  三、发散思维,培养解决问题能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的'活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

  在本课教学中,也有值得进一步探讨的问题。例如:让学生运用“猜想——验证”的方法探索规律,感悟等式的性质,这样的学习方式,学困生更像一个旁观者,教师该怎么办?

式与方程知识点第 3 篇

  方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的,解方程的根据是等式的性质,这节课上学生必须很好的掌握,现对这部分内容总结如下:

  本节课的整体过程是这样的:先利用让学生来实验,从而引出了等式的性质1,然后让学生利用等式的性质1来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是比较简单,都是能一步能得出结果的方程。讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。

  总结一下,大致有以下几种比较常见的情况::①含未知数的项不知道如何处理;②没有同时进行运算;③没有加上或减去同一个数。针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

  总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来小学的方法进行;第二,不是同时进行运算还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

  另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

式与方程知识点第 4 篇

教学目标:

知识与技能:通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

过程与方法:利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。

情感、态度与价值观:培养学生观察与概括、比较与分析的能力。

教学重点:掌握等式的基本性质。

教学难点:理解并掌握等式的性质,能根据具体情境列出相应的方程。

教学方法:启发式教学;自主探索、观察、归纳、合作学习新知。

教学过程:

一、情境导入

1.上节课咱们认识了天平,知道天平的两边重量完全相同时,天平才能保持平衡;并利用天平学会了等式和方程的含义:等号两边完全相等的式子叫等式,含有未知数的等式就是方程。

2.同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)

二、互动新授

1.出示教材第64页情境图1第一个天平图。

让学生仔细观察图,并说一说:通过图你知道了什么?

让学生自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。

引导学生小结:1个茶壶的重量=2个茶杯的重量。

追问:如果设一个茶壶的重量是n克,1个茶杯的重量是b克,能用式子表示吗?

让学生尝试写出:a=2b(师板书)

引导学生思考:如果在天平的两边同时各放上一个茶杯,天平会发生什么变化呢?

先让学生猜一猜,学生可能会猜测出天平仍然平衡。再追问:为什么?

学生可能会说:因为两边加上的重量一样多。

教师先进行实际操作天平验证,让学生观察。再演示这一过程,并明确:两边仍然相等。

小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。

让学生尝试用字母表示这个式子:a+b=2b+b(师板书)

提问:如果两边各放上2个茶杯,还保持平衡吗?两边各放同样的一把茶壶呢?

学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a

2.出示教材第64页图2的第一个天平图。

让学生观察现在的天平是什么样的?(平衡)

追问:如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?生尝试写出:a+b=4b

再问:如果把两边都拿掉1个花瓶,天平还平衡吗?先让学生猜一猜,再演示。

学生回答:平衡。让学生尝试用等式表示:a+b-b=4b-b

从图上你能知道什么?(出示教材第64页图2第二个天平图)

(1个花盆和3个花瓶同样重。)

3.通过这几个实验,你发现了什么?

引导小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。天平的两边同时加上或减去同样的数量,天平仍然平衡。你能用一句话来表示你的发现吗?

引导学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

4.引导学生通过假设具体的数进行比较验证。如:假设一个花瓶1千克,那么4个花瓶共4千克;一个花盆3千克,再加一个花瓶也是4千克。把两边同时减去一个花瓶也就是减去1千克,那么两边都剩下3千克。

5.猜猜:除了这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?

让学生猜测。这里对学生可能有些难度,有些学生的猜测脱离不了等式的性质1。

如:学生猜测天平的两边同时放2个、3个杯子;同时减去一把茶壶等。这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?

6.出示教材第65页图1的第一个天平图,让学生观察并说明。

(一瓶墨水的重量=一盒铅笔盒的重量)

引导学生用a表示墨水的重量,用6表示铅笔盒的重量,写出等式:a=b。

猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?

学生猜测后,教师进行实际天平操作,验证学生的猜测。

多媒体演示变化过程,并引导学生用等式表示:2a=2b。

如果把天平的两边物品的数量分别扩大到原来的3倍、4倍呢?(仍然保持平衡)

7.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。

(2个排球的质量=6个皮球的质量)

引导学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。

质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?

学生猜测:平衡。

教师演示,并引导学生用等式a=3b表示。

8.通过刚才的试验,你发现了什么?

发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。

你能用一句话总结一下等式的这个性质吗?

归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

9.为什么等式两边不能除以O?学生交流,汇报:O不能做除数。

三、巩固拓展

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除