初中数学一次函数知识点 一次函数八字口诀

初中数学一次函数知识点

  在我们平凡无奇的学生时代,不管我们学什么,都需要掌握一些知识点,知识点有时候特指教科书上或考试的知识。掌握知识点有助于大家更好的学习。以下是小编收集整理的初中数学一次函数知识点,希望能够帮助到大家。

  初中数学一次函数知识点 篇1

  一、常量、变量:

  在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

  二、函数的概念:

  函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

  三、函数中自变量取值范围的求法:

  (1)用整式表示的函数,自变量的取值范围是全体实数。

  (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

  (3)用寄次根式表示的函数,自变量的取值范围是全体实数。

  用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

  (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

  (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

  四、函数图象的定义:

  一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

  五、用描点法画函数的图象的一般步骤

  1、列表(表中给出一些自变量的值及其对应的`函数值。)

  注意:列表时自变量由小到大,相差一样,有时需对称。

  2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

  3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

  六、函数有三种表示形式:

  (1)列表法

  (2)图像法

  (3)解析式法

  七、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数。其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k0)的函数叫做一次函数。

  当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例。

  八、正比例函数的图象与性质:

  (1)图象:正比例函数y=kx(k是常数,k0))的图象是经过原点的一条直线,我们称它为直线y=kx。

  (2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。

  九、求函数解析式的方法:

  待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

  1、一次函数与一元一次方程:从数的角度看x为何值时函数y=ax+b的值为0。

  2、求ax+b=0(a,b是常数,a0)的解,从形的角度看,求直线y=ax+b与x轴交点的横坐标

  3、一次函数与一元一次不等式:

  解不等式ax+b0(a,b是常数,a0)。从数的角度看,x为何值时函数y=ax+b的值大于0。

  4、解不等式ax+b0(a,b是常数,a0),从形的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围。

  初二年级数学一次函数知识点总结就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。

  初中数学一次函数知识点 篇2

  二次函数基本知识点

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a

  抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的'对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P[-b/2a,(4ac-b^2;)/4a]。

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  二次函数的三种表达式

  ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  ②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k

  ③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)

  以上3种形式可进行如下转化:

  ①一般式和顶点式的关系

  对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即

  h=-b/2a=(x1+x2)/2

  k=(4ac-b^2)/4a

  ②一般式和交点式的关系

  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

  初中数学一次函数知识点 篇3

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的'值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  初中数学一次函数知识点 篇4

  1.求函数图像的k值:(y1-y2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与y轴平行线段的中点:|y1-y2|/2

  4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

  5.求两个一次函数式图像交点坐标:解两函数式

  两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

  6.求任意2点所连线段的'中点坐标:[(x1+x2)/2,(y1+y2)/2]

  7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)

  x y

  + + 在第一象限

  + - 在第四象限

  - + 在第二象限

  - - 在第三象限

  8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2

  9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

  10.y=k(x-n)+b就是向右平移n个单位

  y=k(x+n)+b就是向左平移n个单位

  口诀:右减左加(对于y=kx+b来说,只改变k)

  y=kx+b+n就是向上平移n个单位

  y=kx+b-n就是向下平移n个单位

  口诀:上加下减(对于y=kx+b来说,只改变b)

  初中数学一次函数知识点 篇5

  一、数与式

  1、有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

  2、实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

  3、平方根、算术平方根、立方根的区别。填空题必考。

  4、求分式值为零时学生易忽略分母不能为零。

  5、分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

  6、非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

  7、计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

  8、科学记数法。精确度,有效数字。

  9、代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

  二、方程(组)与不等式(组)

  1、各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

  2、运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的.基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!

  3、运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

  4、关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

  5、关于一元一次不等式组有解无解的条件易忽视相等的情况。

  6、解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

  7、不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

  8、利用函数图象求不等式的解集和方程的解。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除