数学初中函数知识点总结 初中数学函数知识整理
数学初中函数知识点总结
在日常过程学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?下面是小编帮大家整理的数学初中函数知识点总结,希望能够帮助到大家。
数学初中函数知识点总结1
反比例函数
y=k/x(k≠0)的图象叫做双曲线。
当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);
当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升)。
因此,它的增减性与一次函数相反。
以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的`交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
数学初中函数知识点总结2
1、函数概念:
在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
2、一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:
(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b0)中的'“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
3、一次函数的图象(三步画图象)
由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b。
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)
(1)k的正负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k<o时,y的值随x值的增大而减小。
(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(3)b的正、负决定直线与y轴交点的位置;
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数。
(4)由于k,b的符号不同,直线所经过的象限也不同;
5、确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值;
(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值。
6、待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法。其中未知系数也叫待定系数。例如:函数y=kx+b中,k,b就是待定系数。
7、用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式。
8、本章思想方法
(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。
(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除