航空航天概论论文(精选5篇)
航空航天概论论文范文第1篇
Abstract: This paper uses the random network theory to analysis on invalid parts repair process of aviation products. With understanding of invalid parts repair process of aviation products, we point various of uncertain factors in the repair process. By using the random network theory, we construct a GERT network model to describe invalid parts repair process of aviation products and offer a way to solve the model. Based on a case of aviation products repair process, we get the probability, cycle time and variance of successful product repairing, these could be the useful results for leaders’ decision. Based on above studies, we finally make some further analysis on invalid parts repair process of aviation products and provide some effective ways to optimize the repair process.
关键词: 航空产品返修;流程;GERT网络
Key words: repair of aviation products;process;GERT network
中图分类号:TH17 文献标识码:A文章编号:1006-4311(2023)32-0171-02
0引言
随着现代科学技术在航空产品中的广泛运用,航空产品的性能要求与结构复杂程度不断提高,这一新的发展对航空产品从设计、制造、使用、维护等各个方面提出了更高的要求。其中,航空产品故障件返修作为保障航空产品使用可靠性、重复性、经济性的重要环节,在整个航空产品生命周期中占有十分显著的地位。然而,航空产品故障件的返修流程中存在着大量的不确定因素,如航空产品故障产生原因的不确定,航空产品返修工艺的不确定以及航空产品返修成功概率的不确定性等等。在面临各种不确定因素的情况下,如何定量预测和估算航空产品故障件返修流程的概率和时间周期成为急需解决的重要问题。
本文利用随机网络理论,对航空产品故障件返修流程进行深入分析,确定返修流程的各个环节和活动,构建了航空产品故障件返修流程的GERT(Graphical Evaluation and Review Technique,即图示评审技术)模型,并举例求出了返修成功概率和流程平均时间周期的解析解,从而为航空产品故障件的返修流程提供了实际的数据支撑,对企业决策者制定返修计划和实施返修决策都具有一定的实用价值。
1航空产品故障件返修流程GERT模型构建及求解
1.1 航空产品故障件返修流程分析航空产品故障件返修主要分为五个阶段,包括:故障分析阶段、原因分析阶段、维修分析阶段、维修实施阶段和信息反馈阶段。如图1所示。具体来说航空产品故障件返厂后,由质量管理部门通知用户代表,并召集设计师、工艺师等相关技术人员共同确认故障现象、分析故障原因,并通知责任部门对故障原因确认。故障原因明确后,由有关产品工艺员编制返修工艺,按返修工艺组织返修。在返修过程中如有报废,则由检验开具报废单,责任部门签字。产品返修完成后,提交厂检,检验人员按返修工艺要求进行检验验收,合格后作好返修记录。厂检合格后,通知用户代表对返修产品验收,验收合格后在由操作工、检验员、用户代表签字认可,办理发货手续。同时责任部门需填写纠正/预防措施单等信息反馈表。
1.2 故障件返修流程GERT模型构建GERT网络技术是网络理论、概率论、模拟技术和信号流图的结合,是一种新型的广义随机网络技术,又被称为决策网络技术。它使用带概率的有向网络图进行分析,可以用来分析研制性和情况复杂多变的项目计划与控制问题。
依据航空产品故障件返修流程的分析结合GERT网络技术,对于航空产品故障件返修流程而言,它的每一步都可以视为整个故障件返修系统状态之间的概率转移过程。我们用节点表示系统状态,用连接各节点之间的箭线表示各状态之间的概率转移关系。该“返修流程”的GERT网络模型如图2所示,图2中各流程活动的含义如表1所示。
1.3 故障件返修流程GERT模型求解根据梅森公式:W(s)=W(s)•H,式中H为GERT网络的特征式。在此网络中,共有一阶环三个,二阶环两个。
由梅森公式可得,返修合格时:
W(s)=(1)
其中:
H=1-(W•W+W•W+W•W•W)+(W•W•W•W+W•W•W•W•W)(2)
由式1、2可得:
返修合格概率:p=W(0)(3)
返修不合格概率:p=1-W(0)(4)
返修流程时间周期:E[t]==(5)
返修流程时间周期方差:V[t]=E[t]-(E[t])=-(6)
2案例研究
本文以某航空产品生产企业接收外场航空产品故障件返修为例,依据航空产品故障件返修流程GERT模型,对模型中的各节点和活动进行分析,最终求解该航空产品故障件返修的合格概率和相关时间周期。其中活动分布类型、相关参数及实现的概率, 有历史资料的由资料进行统计和分析后获得,属开创性作业而无历史资料的由相关专业的专家进行主观估计后加权获得。模型中各活动参数如表2所示。
将各参数代入求解模型中,经过计算可得:
返修合格概率:p=W(0)=0.7910;
返修不合格概率:p=1-W(0)=0.2090;
返修流程时间周期:E[t]==11.76(天);
返修流程时间周期方差:V[t]=E[t]-(E[t])=1.40(天2);
返修流程时间周期标准差:σ==1.18(天)。
3航空产品故障件返修流程分析
3.1 由返修流程GERT模型及案例分析可知,航空产品故障件返修流程各个阶段的关系可以进一步总结为一个概率转移模型。从案例结果而言,该流程的返修合格概率仅为0.7910,即从概率上来说将有21.9%的故障件将由于返修不合格报废,这一报废概率相对较大。产生这一结果的原因主要是在返修流程GERT网络中有可能产生报废结果的活动较多,包括活动5-12、8-12、9-12。其中活动5-12是由于故障件返修前自身性质决定的,其发生的概率p512可称为固有报废概率;活动8-12、9-12是由于返修过程中由于返修能力等决定的,其发生的概率p812、p912可称为能力报废概率。
返修流程中系统最终产品报废的概率是由本系统固有报废概率和能力报废概率这两个方面因素共同决定的,因此应在提高产品质量、降低系统固有报废概率以及提升返修能力、降低能力报废概率这两个方面入手,最终提高航空产品故障件返修的合格概率。
3.2 该返修流程GERT模型中,造成项目完成平均时间周期较长的主要原因在于很多活动需要多部门、多人员确认,最为明显的是活动2-3和3-4,其中活动2-3为产品故障分析,需要主管分析师和主管设计师共同分析故障件的故障原因,活动3-4为产品故障确认,需要用户、质量技术员和产品责任部门最终共同确认故障件的故障原因。多部门多人员的分析确认形式大大增加了产品返修平均周期,因此,应从提高部门人员工作效率及建立健全故障分析确认机制入手,建立统一的交叉职能小组,明确人员及分工,以此优化返修流程的平均周期。
3.3 在案例中该项目完成的平均时间周期为11.76天,标准差为1.18天,该项目完成的时间最大值与最小值之间相差为2.36天,相对于复杂的返修流程及大量的不确定条件来说时间周期相差的幅度不大,这说明该航空产品故障件返修流程受各种随机因素的影响较小,流程稳定性较高。实际中的项目管理者通常更关心新产品研发项目能否按期完成,就案例本身而言,将故障件返修计划完成时间定为13天,那么该返修流程延期的可能性几乎不存在。
4结论
本文运用随机网络理论对航空产品故障件返修流程进行研究。首先明确了航空产品故障件返修流程,指出返修流程中多种不确定因素。其次运用随机网络理论,构建了航空产品故障件返修流程GERT网络模型,给出模型求解方法。然后结合某航空产品返修流程,得到产品返修合格概率,产品返修周期及方差,为领导层决策提供了科学依据。在此基础上,进一步对航空产品故障件返修流程进行了剖析,明确了产品返修流程合格率较低、平均周期较长的原因,相应提出了解决和巩固的措施;同时指出该航空产品故障件返修流程较为稳定的特点,为流程优化提供了明确的方向和有效的方法。
参考文献:
[1]冯允成,吕春莲等编.随机网络及其应用[M].北京: 北京航空学院出版社,1987.
[2]方志耕,龚正,黄西林.公路军事交通运输勤务综合演习项目GERT网络模型研究与分析[J].系统工程理论与实践,2000,(4):132-135.
[3]方志耕,龚正,黄西林.基于图示评审技术GERT的高科技产品开发研究[J].系统工程,2005,23(11):112-115.
[4]屈保社,张卫星.GERT在科研课题研究管理中的应用[J].系统工程,1999,17(1):69-75.
[5]何正文,徐渝,朱少英,张静文.新产品研发项目GERT 模型及其模拟求解[J].数学的实践与认识,2003,33(11):45-50.
[6]Kenzo Kurihara, Nobuyuki Nishiuchi. Efficient Monte Carlo simulation Method of GERT-type network for project management[J]. Computer & Industrial Engineering, 2002, 42: 521-531.
[7]沙全友,王伟,韩毅,郝京辉.面向航空产品项目管理网络计划模型研究[J].计算机工程与应用,2007,43(6):99-101.
航空航天概论论文范文第2篇
关键词:民航产业航空管制认识思考
中图分类号:F562文献标识码:A文章编号:1672-3791(2023)02(c)-0000-00
航空管制是世界上各个国家对自有领空进行管理的一种手段,一般都有明确的立法和规定。我国民用航空对领空的使用范围有明确规定,超过民用航空范围的空域由我国国防部队――中国人民空军单位进行管理。
1我国民航业发展
我国民航业发端于中国人民空军,1980年以前实行完全军事化管理。随着我国经济社会的不断发展,逐步开始了民航业的改革,大致可分4个阶段。1949年-1978年,实行军事化管理,民用航空运输发展受政治、经济影响较大;1978年-1987年,逐步放松市场进入时期,进入企业化管理时期,拉开了地方航空企业的序幕;1987年-2002年,民航业开始实行市场化经营机制时期;2002年以来,我国民航业体制改革取得重大突破。按照《民航体制改革方案》,民航总局作为国务院主管全国民航事务的直属机构,主要承担民用航空的安全管理,市场管理、空中交通管理、宏观调控及对外关系等方面的职能。
2航空管制的概念
有关航空管制的的概念,由于各国在发展过程的习惯和军民航的飞行特点各不相同,存在以下几个不同的名称:航空管制、飞行管制、空中交通管理、空中交通管制等。
航空管制(AirContrl)亦称飞行管制。有关部门根据国家颁布的飞行规则,对空中飞行的航空器实施的监督控制和强制性管理的统称。主要目的是维持飞行秩序,防止航空器互撞和航空器与地面障碍物相撞。
空中交通管理(airtrafficmanagement;ATM)是指为行使国家领空、保障管制空域的飞行安全和提高飞行效率而建立起来的业务。包括有效地维护和促进空中交通安全,维护空中交通秩序,保障空中交通畅通等。
中国的航空管制工作开始于国民政府时期。航空管制概念是我国军航的一个相对专用的概念,空中交通管理是我国民航及世界范围内的一个通用概念。
一般理解的航空管制是上面说的狭义航空管制,实际上,一切的航空行为、包括航空附属的地面设施、资源的管理、使用调度都是在依照航空管制的内容进行,航空管制可以说是所有民航行为的基本原则,是个广义的规则。
在今天,航空器的发展已经超越了大气层到达了外层空间,航空管制的概念比空中交通管理更为全面。不仅如此,就对空中交通实施强制性的监督、管理和控制而言,航空管制的内涵及实质与空中交通管理的内涵及实质并没有本质上的不同。同时,在我国,无论是军航实施航空管制,还是民航进行空中交通管理,均必须在国务院、中央军事委员会空中交通管制委员会的领导下,由中国人民空军统一组织实施。因此,本文所涉及到的航空管制(飞行管制)概念,就中国民航而言,即空中交通管理。
3我国民航放松管制政策
以20世纪70年代末美国对民航业的放松管制改革为标志,至今世界各国对航空管制总体出现了政策放松的趋势。借鉴国际经验与发展趋势,改革开放以来,我国也逐步放松了对民航业的管制。但是从当前大部分国家航空管制情况来看,放松后再度出现的高集中等反复情况的不确定性来讲,民航业的管制最终是否会被竞争替代还不得而知。所以,全球各国对民航业的管制政策,还需要总结和确定,并在理论和实践层面加以不断改进。
4全球化背景下未来中国航空管制政策的发展方向
在全球化的发展己经成为不可逆转的历史潮流的今天,我们必须清醒地认识到全球化的正负两面性特征。中国建国以来几十来的历史已经证明,闭关自守是行不通的,只有坚持改革开放,将自身的建设融入到全球化发展的进程,结合本国国情,走中国特色发展道路。
民用航空管制工作亦是如此。一是要从政策层面进行确定和谋划,在全球化发展的背景下制定中国航空管制战略的出发点和着落点;二是要建立平战结合,军民联合的统一体制,坚持做到统一的航空管制法规建设、统一的管制工作程序和标准、统一的航空管制信息交换和统一的人员培训体制,充分考虑了民航和国防的需要,相互促进,整体提高;三是坚持“空天一体”的中国航空发展战略,把基于陆、海、空、天基系统,进行数据的信息栅格处理和加工,对航空航天器飞行活动实施一体化控制与管理;四是着眼优化空域资源配置,逐步开放低空领域,促进民航业的深入发展。
5结语
全球化浪潮已深入人心。我国作为发展中国家,面对全球化既是机遇,也是挑战。在航空管制方面,一是要积极参与全球规则的制定,实施积极、务实与灵活航空管制战略和策略;二是要从战略高度上,不断完善航空管制政策,促进民用航空业的快速稳健发展和国土防空的绝对安全。
参考文献
[1] 潘卫军.空中交通管理基础(M〕.成都:西南交通大学出版社.2005:2.
[2] 孟平.中国通用航空50年M.北京:中国民航出版社2004:16.
[3] 傅有云.新
航空航天概论论文范文第3篇
关键词 课程教学改革;航空航天类专业;自动控制原理
中图分类号 G642.0
文献标识码 A
文章编号 1005-4634(2023)05-0048-05
0 引言
《自动控制原理》是航空航天类本科专业一门重要的专业基础课。以笔者所在的北京理工大学为例,航空宇航科学与技术一级学科下属的飞行器设计与工程、航天运输与控制、飞行器动力工程、武器系统与发射工程、探测制导与控制技术等专业的本科生,均在大三第一学期必修《自动控制原理》经典控制理论部分,包括54个理论课时和10个实验课时,其任务是通过对自动控制理论知识的学习,培养学生对控制系统的分析设计能力、工程实践能力和创新能力。同时,《自动控制原理》还是学习测试技术、飞行器制导与控制技术、飞行器总体设计、航天器测控原理等诸多专业课程的先修课,在航空航天类专业的本科生培养计划中占据着非常重要的地位。
《自动控制原理》的授课模式一般有两种:一是将经典控制理论部分和现代控制理论部分分开讲述,先讲授经典控制后讲授现代控制,目前国内大部分高等院校均是采用的这种授课模式;二是将经典控制和现代控制融合讲授,这种授课模式有助于培养学生从系统角度、全局高度来思考问题的能力,更利于掌握控制理论的实质。由于授课模式的沿袭性及单学期课时数的限制,北京理工大学航空航天类专业的《自动控制原理》采用了前一种授课模式。授课教师采用A、B角的方式,教师队伍中有授课近20年的教师,还有刚刚博士毕业踏上工作岗位的年轻教师,更难能可贵的是,所有授课教师均有出国留学或访问的经历,兼通中西教学模式之长,融蓬勃朝气与丰富经验于一体。
本文主要是以《教育部关于全面提高高等教育质量的若干意见》(教高[2023]4号)中“坚持内涵式发展”、“促进高校办出特色”、“创新人才培养模式”、“提升国际交流与合作水平”等内容为指导,结合北京理工大学的学校定位和办学特色,以笔者在《自动控制原理》经典控制理论部分本科教学过程中的思考和认识为基础,对北京理工大学航空航天类专业在《自动控制原理》本科教学改革中的若干有效措施进行总结和探讨。
1 授课内容及学习过程中存在的问题
1.1《自动控制原理》的授课内容
笔者主要讲授《自动控制原理》中的经典控制理论部分,授课内容分为八章,分别是:自动控制系统导论、自动控制系统的数学模型、自动控制系统的时域分析、根轨迹法、频率法分析、控制系统校正、非线性系统和线性离散系统。其中,前六章和第八章是重点讲授内容,第七章是一般讲授内容。就总的讲授内容来说,有理论性强、新概念多、系统性强、与工程尤其是航空航天工程联系紧密的特点,如已列装或在研的大部分导弹飞行器,其自动驾驶仪的设计仍主要是在经典控制理论的框架下完成的。学习过程是先了解控制系统的组成尤其是强调“反馈”的概念,再根据实际的控制系统建立数学模型,然后通过时域法、根轨迹法、频率法等分析系统性能的优劣对比,最后对系统整体性能进行校正和设计,可以说,整个过程是一个完整的体系,更是一个循序渐进的过程。
1.2《自动控制原理》学习过程中的几点问题
无论哪门课程,讲授目的均是希望学习者能够掌握相关知识的基本原理、分析方法并最终做到灵活运用。考试成绩是评价学习者是否达到上述标准的一个参考,但考试成绩并不能表明一个学生是否真正达到了上述标准。为了准确评估《自动控制原理》的讲授效果,真正了解该门课程学习中可能存在的问题,不但要时刻注意本专业学生在修习过程中的反馈意见,而且要广泛调研和阅读其它学校和专业的教师在该门课程上的经验总结。在此基础上,结合笔者的亲身体验和思考,认为航空航天类专业的学生在学习《自动控制原理》过程中可能面对的主要问题包括:(1)部分学生由于数学基础不够扎实,对课程中涉及到的数学知识产生畏难情绪,进而无法很好地掌握控制系统的分析方法;(2)不能将所学的控制理论知识与自己专业的实际案例充分地联系起来,这主要是在学习过程中接触专业案例少造成的;(3)阅读英文文献的能力不足,而且这种不足突出表现在缺乏对专业词汇的正确理解上,这说明《自动控制原理》需要适度地推进双语教学改革;(4)无法将基本理论和计算机辅助设计软件MATLAB结合起来进行更有效地控制系统设计,即割裂了基本理论和计算机辅助软件相辅相成、互相印证、互相促进的关系;(5)从系统角度理解控制系统核心思想的能力不足,即无法做到融会贯通,更谈不上灵活运用,这需要授课过程中注意前后串联,帮助学生建立起系统概念。针对上述问题,结合北京理工大学办学定位和航空航天类专业《自动控制原理》的授课特色,授课教师均提出了有针对性的改革措施。多年来的教学实践证明,这些措施很好地解决了北京理工大学航空航天类专业本科生在《自动控制原理》课程中的学习问题,增强了学生对该门课程的学习兴趣和“自主学习”能力。
2 教学改革的若干举措
2.1从数学基础抓起
“工欲善其事,必先利其器。”《自动控制原理》课程涉及大量的数学知识,如拉氏变换及其逆变换、微分方程、差分方程、复变函数理论、Z变换等。毫不夸张地说,扎实的数学功底是学好该课程的基础。如果学生缺乏必要的数学知识,教师又不能适时补上这个不足的话,很容易造成学生在学习过程中的畏难情绪,不可避免地会影响教学效果。
北京理工大学授课教师的做法是在《自动控制原理》开课伊始,就给学生列出所有需要用到的基础数学知识。一方面引导学生重新复习这些已经学过的数学知识;另一方面,授课教师还会抽出专门的课时来对这些数学知识进行复习和重点讲授。为了不断加深学生对这些数学知识的理解,在用到相应的数学工具时,授课教师都会结合具体的实例进行更详细地讲述。为了尽可能减少学生在学习中的畏难情绪,北京理工大学授课教师在考试中坚持“注重概念,弱化计算”的理念,只要学生思路正确,仅仅是计算错误的情况下,尽量少扣或不扣分。
2.2双语教学,与国际接轨
开展双语教学有助于我国高等教育与国际接轨,是当前教育改革的热点和重点,同时也得到了教育部等相关部门的大力支持。在双语教学的改革中,有一点需要明确的是,专业课双语教学的目的并不是为了增加学生的词汇量,也不是为了提高学生外语的写作水平,更不是为了教学生外语语法,而是为了增强学生阅读专业外文文献的能力和对专业知识的理解能力。近年来,英语已经逐渐发展成为全世界通用的语言,最新的科研成果更主要是以英文形式发表。所以,我国高等教育中大部分的双语教学均是采用中文和英文的双语授课模式。
由于《自动控制原理》涉及到的诸多基本理论和分析方法大都是从国外引进和翻译过来的,加上国外学术界习惯用人名来命名定理的做法,给国内学生记忆和理解这些理论和方法增加了额外的困难。如用于判定线性系统稳定与否的劳斯判据就是以英国数学家Edward John Routh的名字命名的,类似这样的例子还有很多,这对于习惯望文生义的国内学生来说,想仅仅从字面意思来理解劳斯判据本身几乎是不可能的。有鉴于此,基于航空航天类专业《自动控制原理》双语教学改革的目的主要是为了增加学生对专业词汇认知这一基本的出发点,决定了航空航天类专业《自动控制原理》双语教学的授课方针应以中文为主、英语为辅。具体做法是,每当第一次出现新的名词、原理和方法时,授课教师先用中文进行详细讲解,然后告诉大家这些名词、原理和方法在英文中的表示方法和来源,并在以后遇到这些名词、原理和方法时,更多地采用英文表述。如传递函数(Transfer Function)、劳斯判据(Routh Criterion)、阶跃响应(Step Response)、脉冲响应(Impulse Response)、根轨迹(RootLocus)等,都可以采用这种处理方式。此外,还需要注意引导学生适量阅读英文参考书和专业文献,由于Katsuhiko Ogata所著《Modern Control Engineer-ing》一书在世界范围内的广泛被接受性,北京理工大学同样推荐学生将这本书作为英文参考书。
2.3融科研于教学
随着我国高等教育改革的不断实施和深入,昔日的“填鸭式”教学已逐步被更能激发学生“自主学习”能力的“启发式”、“案例式”教学所取代。在《自动控制原理》的教学中,如果只是讲授一般的数学公式和物理定理,而与实际工程割裂开来的话,很可能出现的后果就是学生学习后不知道用在什么地方,更不知道如何用,更糟糕的情况是学生在考试后就把所学的东西全忘掉了。为了避免这一状况的发生,有必要将专业案例、授课教师的科研项目融入日常的教学工作中去,让科研带动教学、教学促进科研。
如在第一章讲授自动控制系统定义和基本组成的时候,通用的教材是举一些工业上常见的例子,像室温调节系统和水位调节系统来引入自动控制的专业术语和反馈的概念。这种讲授方法是很好的,有利于学生建立对控制系统组成的直观概念,并认识到自动控制的核心思想所在。对于航空航天类专业的学生来说,在讲述通用案例的同时,还可以结合航空航天领域的应用案例,如引入图1所示的导弹攻击飞机的案例。在这个案例中,导弹根据自己探测到的目标机动特性,依据一定的制导律生成最佳攻击曲线,当弹上的测试设备探测到实际飞行路线和预定飞行路线出现偏差的时候,弹载计算机会依据一定的法则生成控制指令,气动舵机来执行这一控制指令,从而达到控制导弹回到预定飞行路线的目的。按照这一描述可以画出它的系统方块图,如图2所示,和基本的负反馈闭环控制系统(如图3所示)对应起来,预定飞行路线对应给定输入、弹载计算机对应控制器、气动舵机对应执行机构、导弹就是被控对象、实际飞行路线即是实际输出、弹载测试设备即对应测量输出的传感器。这样讲授下来,由于比较贴近专业方向,同学们就很容易理解控制系统的结构,并对输入、输出、被控对象、执行机构、控制器的作用及反馈的概念有了更为直观和深刻的认识。
在讲述控制系统稳态性能和动态性能的时候,大量引入航空航天的专业案例,尤其是一些因为控制系统设计失误或控制系统未能正常工作产生重大损失的失败案例,对引发学生的学习兴趣颇有帮助。从教学的效果看,这些案例的引入,不仅加深了学生对《自动控制原理》重要性的认识,激发了他们学习的热情,同时,还培养了他们对所学专业的兴趣。在此基础上,可以注意吸收一些对自动控制理论或应用感兴趣的学生提前进入实验室,并挑选与任课教师负责项目相关或者处于航空航天控制前沿的研究方向,如临近空间飞行器的制导与控制技术,让他们自由发挥,思考和创新,切实培养他们的动手能力。
此外,授课教师要非常注重“基于书本、超越书本”。比如香农(Shannon)采样定理认为:对于一个连续信号来说,当采样角频率是该连续信号所含最高次谐波频率两倍以上的话,即能做到一个周期内采样两次以上的话,那么经采样后所得到的脉冲序列,就包含了原连续信号的全部信息,可通过理想滤波器把原信号毫无失真地恢复出来。这一表述在数学理论上是没有任何问题的,但在实际工程项目中往往是行不通的,比如一个正弦曲线的测试,一个周期里只采样两三个点的情况下,几乎没有可能复现原信号。类似于这样的问题,授课教师需要在授课过程中向学生特别强调。
2.4计算机辅助教学
由于《自动控制原理》在授课过程中涉及到的数学公式、图形(结构图、框图、根轨迹图、伯德图等)比较多,非常不方便在课堂上进行直接板书,一旦板书不清楚会直接影响学生的学习效果。而这些公式和图形是非常适合以幻灯片(PPT)的形式来进行表述的,学生也更乐意看到这种方式。北京理工大学授课教师同样采用了以PPT为主的授课模式,配以适当的动画,给学生一个更为直观的展示。如在讲授动态性能指标的时候,延迟时间、上升时间、峰值时间、超调量、调节时间等名词的定义并不是那么容易理解,但通过动画的形式就可以很清楚、明了地向同学们展示这些概念的不同,学生反映良好。再比如在讲授不同阻尼比情况下二阶系统单位阶跃响应特性的时候,只靠文字表述“随着阻尼比的增大,系统的响应越快,但超调量越大”的话,大部分学生是比较茫然的。如果换成通过PPT展示给同学们如图4所示的响应曲线时,就会一目了然,同时,还有助于同学们掌握零阻尼、欠阻尼、临界阻尼、过阻尼等情况下单位阶跃响应特性的不同。
MATLAB是学习《自动控制原理》的学生必须掌握的一个计算机辅助分析工具。实际上,一个令人引以为傲的事实是,北京理工大学航空航天类专业本科生的MATLAB基础知识都是在《自动控制原理》的课堂上学到的。由于年轻学生对新鲜事物天生的好奇感,当他们看到教材上一幅幅精美的图片是通过MATLAB展示在自己面前的时候,不但会加深他们对所学知识的理解,更会激发他们学习这门课的热情。比如讲二阶欠阻尼系统阶跃响应的时候,可以首先引导学生思考一个问题:“既然阻尼比越小,系统响应越快,超调量越大,那怎么来选择合适的阻尼比呢?”然后再用教学计算机上装载的MATLAB画出图5,这是阻尼比位于[0.10.9]之间,以上升时间为横坐标、超调量为纵坐标的Pareto图,同时在图中标示阻尼比分别为0.4、0.707和0.8所对应的点。以这个直观的示意图做基础,同学们就很容易理解为什么工程上一般要求阻尼比在[0.4 0.8]范围内了,再告诉同学们阻尼比为0.707时控制系统效果最佳,他们也就明白了因果来源。如果更进一步画出阻尼比分别为0.6、0.707和0.8时候的单位阶跃响应曲线来,如图6所示,同学们就会有一个更加明确和直观的印象。此外,授课教师还可以通过课下作业的形式,引导学生利用课堂所学知识编程实现更复杂的响应曲线,使学生可以亲身感受到响应曲线随不同参数变化的规律,不但可以加深学生所学的理论知识,还有助于学生掌握辅助软件的用法。
用MATLAB辅助教学可能会带来的一个副作用就是,同学们可能觉得只要掌握MATLAB就可以了,而忽略了自动控制本身的基本原理和定性的分析方法。这是授课教师在教学过程中需要重点留意并刻意避免的问题之一,北京理工大学授课教师在每次用MATLAB辅助教学时,都会强调基本原理的重要性,同时会刻意用所学的定性分析方法来评估MATLAB结果的正确与否,并一再强调,MATLAB只是一个辅助大家进行控制系统分析的工具,不能取代大家所学的基本原理和分析方法本身,考试中也不会考这方面的内容。
2.5注重前后串联,建立系统概念
《自动控制原理》本身的讲授内容多、跨度时间长,而且学生同时还在修习其它课程,所以用在《自动控制原理》这一门课上的时间是极其有限的。而且一般教材也更倾向于将每个章节的内容独立出来,如仅仅在第二章讲述控制系统模型的建立方法,在以后的学习中就直接拿现成的传递函数来用;再如第三章讲述时域分析法之后,在后续章节的讲述中几乎不会再涉及。很可能造成的一个后果就是学习过程中常常不清楚各个知识点之间的相互联系,也无法真正的做到融会贯通,在遇到实际的工程问题时就会显得束手无策、不知如何下手。这需要授课教师帮助同学们理清线索,弄清楚各个章节之间的因果关系。
北京理工大学授课教师在每个章节开始和结束的时候都会向学生展示图7,告诉大家正在学习的内容在图中什么位置,在整个自动控制原理的框架中起到什么作用,它以哪几个章节为基础、又可以为哪几个章节提供帮助。在课程结束的时候,还会精心选取几个航空航天专业的典型案例,让同学们以小组为单位形成一个大作业,这个大作业涉及到《自动控制原理》所讲授的全部核心内容,从系统建模到系统性能分析,并发挥他们自己的独立思维进行系统的二次设计,从学生的反响及实际的教学效果看,这种做法十分可取。
航空航天概论论文范文第4篇
关键词:“工程材料学”;航空航天专业;教学改革
“工程材料学”是航空主机类专业(包括飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等专业)的学科基础课程。该课程虽然仅有48学时,但承担着为未来的航空工程师构建材料知识体系的重任,对学生今后的发展起着重要作用。本文结合近年的工作实践,对该课程在教学要求、教学内容和教学方法等方面的改革进行研讨。
一、高度重视航空和材料领域发展对“工程材料学”课程教学的影响
材料学既是基础科学,也是应用科学。材料科学与技术的发展,解决了很多工程领域的关键问题,有力地推进了相关科学和技术的进步,使得材料科学成为最活跃的科学领域,材料产业也成为国民经济发展的重要支柱产业。“工程材料学”以物理学、化学等理论为知识基础,系统介绍材料科学的基础理论和实验技能,着重培养学生把这些知识应用于解决工程实际中提出的对材料结构、性能等方面问题的能力。作为一门重要的学科基础课程,“工程材料学”具有较长的开设历史,在人才培养中发挥了重要的作用。航空航天领域的发展对工程技术人员的能力素质提出了更高的要求,特别是“卓越工程师”教育培养计划的实施,对工程类课程建设的需求更加迫切,有必要以新的形势为背景反思该课程的教学改革。航空以众多学科知识、先进研究成果为基础,已发展成为一个由多个分系统组成的大系统,需要工程技术人员采用系统工程的方法进行综合设计。现代航空技术一百多年的发展,使得人们可以在更大的范围内探索天空,也使得飞行器的工作条件更加恶劣,工作环境更加严苛。现代飞行器不仅要具有速度快、航程大、载重多等特点,还要满足节能低碳等要求。材料科学技术的发展,为解决航空航天领域的诸多难题提供了可能,“一代材料,一代飞机”已成为飞行器发展公认的规律。这对航空航天工程技术人员的材料知识提出了更高的要求。在飞行器及其主要部件的设计、制造和维护工作中,要全面认识材料的性质和特点,才能挖掘材料的潜能,充分利用材料的特性,满足工作需要。面对航空航天迅猛的发展形势,仅了解和掌握已有材料的知识是不够的。具有创新素质的工程技术人员,要了解材料科学与工程的发展方向和趋势,分析材料领域的发展对航空航天领域的影响,同时要认真研究具体工作对新材料、新工艺的要求,明确材料发展的需求。在新型飞行器的研发过程中,要综合考虑用户对飞行器总体性能的多种要求,对各项技术参数进行统一的优化。在落实对飞行器性能的要求时可以发现,很多要求是相互矛盾的,比如飞机的航程和机动性就存在着较大的矛盾。为了获得较好的综合性能,需要对飞机进行一体化设计,要及时掌握各种设计方案对飞机主要材料和工艺的要求,对飞机整体结构进行综合优化。在此过程中,各部门工程师都需要和材料系统密切配合,才能实现信息和资源共享,降低全系统的风险,提高系统的可靠性和综合性能。材料科学技术的迅速发展也对课程教学提出了新的要求。材料科学与技术是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是发展最快速的学科之一,在金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等主要方向上的发展日新月异,促使“工程材料学”课程内容的不断充实。“工程材料学”课程要系统讲授材料科学与技术的基础理论和实验技能,使得学生掌握工程材料的合成、制备、结构、性能、应用等方面的知识。早期的航空工程结构以自然材料为主,如在美国莱特兄弟制造出第一架飞机上,木材占47%,普通钢占35%,布占18%。随后,以德国科学家发明具有时效强化功能的硬铝为代表,很多优质金属材料被开发出来,使得大量采用金属材料制造飞机结构成为可能,也使得研究者们投入了更多的精力于金属材料的探索。相应地,这一时期“工程材料学”课程内容也以金属材料为主。上世纪70年代以后,复合材料开始在航空领域应用。复合材料具有较高比强度和比刚度的优点使得工程技术人员对其抱有很大的希望。航空工程师首先采用复合材料制造舱门、整流罩、安定面等次承力结构,而现在复合材料已广泛应用于机翼、机身等部位,向主承力结构过渡。复合材料因其良好的制造性能被大量应用在复杂曲面构件上。复合材料构件共固化、整体成型工艺能够成型大型整体部件,减少零件、紧固件和模具的数量,降低成本,减少装配,减轻重量。复合材料的用量已成为先进飞行器的重要标志。相应地,复合材料必然要在“工程材料学”课程中占重要地位。钛合金的开发和应用使得飞行器具有更好的耐热能力,提高了发动机、蒙皮等结构的性能,有效解决了防热问题。“工程材料学”课程的教学内容应该及时反映材料科学在提高飞行器性能方面的新应用与新进展。与此同时,其他相关学科也取得了长足的发展,使得主机专业教学内容大幅度增加,“工程材料学”课程的教学内容和学时之间的矛盾愈加突出。
二、认真分析专业教学对“工程材料学”课程的不同要求
“工程材料学”课程是一门重要的学科基础课,是基础课与专业课间的桥梁和纽带,在航空航天主机类专业培养学生实践动手和创新创造能力,提高学生综合素质等方面具有重要作用。在多年的教学实践中,该课程对主机类各专业采用同一标准教学。虽然主机类各专业人才培养有其共性要求,但随着航空航天事业的发展,专业分工越来越细,差异化特征也越来越明显,因此“工程材料学”课程应该充分考虑不同专业的具体需求,结合各专业的课程体系安排教学。飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等主机类专业根据航空领域中的分工培养学生,毕业学生的工作要求有所不同,对知识结构的要求也不一样。就材料方面知识而言,不同专业学生也会有所区别,应按照专业特点纵向划分对“工程材料学”课程的要求。不同专业主要服务对象的材料特点是确定课程要求的主要依据。飞行器设计与工程专业要全面统筹飞行器产品及各部件的设计和制造,主要从事飞行器总体设计、结构设计、飞机外形设计、飞机性能计算与分析、结构受力与分析、飞机故障诊断及维修等工作,要求了解材料科学与工程的发展对现代飞行器设计技术的影响,因此要较全面地掌握主要航空材料的性能、制造等方面的知识,了解轻质高强材料的发展动态和发展趋势。飞行器动力工程专业要求学生学习飞行器动力装置或飞行器动力装置控制系统等方面的知识,主要培养能从事飞行器动力装置及其他热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。飞行器动力的重要部件对抗氧化性能和抗热腐蚀性能要求较高,要求材料和结构具有在高温下长期工作的组织结构稳定性。因此,材料在高温下的行为、性能和分析、选择方法应该是该专业“工程材料学”课程的重点。飞行器制造工程和机械工程等专业要针对现代飞行器工作条件严酷、构造复杂的特点,采用先进制造技术,实现设计要求,并为飞行器维护提供便利。该专业要求学生理解飞行器各部件的选材要求,掌握材料的制造工艺。飞行器零部件形状复杂,所用材料品种繁多,加工方法多样,工艺要求精细。很多新材料首先在航空航天领域得到应用,其制造技术具有新颖性的特征,设计、材料与制造工艺互相融合、相互促进的特点非常明显,这就要求学生在“工程材料学”课程中把材料基础打好,适应工艺和材料不断发展的要求。虽然各专业对“工程材料学”课程的要求有所不同,但课程基础一致。该课程名称为“工程材料学”,即明确其重点在于将材料科学与技术的成果运用于航空航天工程,把材料基本知识转化为生产力。“工程材料学”是相关专业材料学科的基本课程,学生要通过该课程了解金属材料、无机非金属材料、高分子材料等微观和宏观基础知识,学习材料研究、分析的基本方法,掌握材料结构与性能等基础理论,研究主要材料的制备、加工成型等技术,为更好地学习专业课程创造条件,为将来从事技术开发、工艺和设备设计等打下基础。由此可见,在明确了各专业对该课程的个性化要求的基础上,更要明确共性要求。“工程材料学”课程要培养学生材料方面的科学概念,提升材料方面的科学素质,扎实的材料科学与技术知识基础是学生学习专业课程、提高综合素质、培养创新能力的必备条件,是进一步发展的基础。因此,“工程材料学”课程采用“公共知识+方向知识”的模式比较合适,即把教学内容划分为每个专业均要求了解的材料领域知识和根据各个专业特色需要重点介绍的知识两部分,既满足了宽口径、厚基础的教学需要,又注重了后续专业课程学习和能力培养的要求,促进了基础理论和专业应用的融合渗透,较好地满足了材料、设计、制造、维护一体化发展的需要,增强了跨学科、跨专业认识问题、思考问题和研讨问题的能力。
三、多管齐下建设丰富的教学环境
作为一门学科基础课程,“工程材料学”课程要根据学校人才培养创新目标和相关专业的人才培养标准、方案,结合卓越工程师教育培养的要求,注重与专业课程体系的融合,注重与工程实践教育的结合,注重对学生创新意识、创业能力及综合运用知识能力的培养。在充分调研与分析专业人才培养对课程教学要求的基础上,要对课程的教学大纲和内容进行修订,与相关教学环节有效整合,拓展教学活动的空间,营造良好的学习环境和氛围,加强与后续课程及实践活动的联系,解决学科基础课的教学与专业人才培养需求的脱节或不衔接等问题。“工程材料学”在第四学期开设,是一门承前启后的课程。在前期开设的课程中,“大学物理”和“航空航天概论”是两门直接相关的课程。“大学物理”提供了学习“工程材料学”的科学基础,认真分析“大学物理”知识点在“工程材料学”中的应用,有助于学生更好地理解相关概念。“航空航天概论”以航空航天领域的发展为主线,介绍飞行器的组成及工作原理。如果在“工程材料学”课程讲授之初让学生重新回到机库,从材料发展的角度再次审视航空航天的进步,结合材料学的概念研究飞行器的组成及工作原理,会使得学生对该课程有比较全面的认识。在相关专业的后续课程中,有好多课程与“工程材料学”密切相关,如“飞行器总体设计”、“发动机原理”、“先进制造技术”等,如果在“工程材料学”中对有关知识点作简单介绍,可以使学生更好地综合分析相关概念,加深理解。在主机类专业培养方案中,“工程训练”是集中式的工程能力培养环节,其教学内容与“工程材料学”密切相关。“工程训练”教学内容以机械制造工艺和方法为主,包括热处理、铸造、锻造、焊接、车削加工、铣削加工、刨削加工、磨削加工、钳工、数控加工、特种加工、塑性成型等,每一种制造工艺和方法都与工程材料密切相关。在以前的教学工作中,材料是加工对象,对材料的性能等的介绍很简单,学生的认识较浅。如果在“工程训练”教学过程中,针对不同的加工工艺和方法对材料作较深入的介绍,从应用的角度分析不同材料加工工艺和方法的适应性,可以促进学生把材料理论知识的学习和工程实际联系起来。通过让学生分析研究实际材料在加工过程中的表现来认识材料的性能,通过感性认识来体会材料变化的规律,把深奥的材料科学理论知识和生动形象的加工过程结合起来。这样不仅强化了工程训练效果,还能让学生把材料的知识学活,留下更深刻的影响,更好地发挥学生的潜力。航空航天主机类专业的课程设计是重要的综合学习环节。课程设计任务一般是完成一项涉及本专业一门或多门主要课程内容的综合性、应用性的设计工作,通过一系列设计图纸、技术方案等文件体现工作成果。很多主机类专业的课程设计涉及材料的选用、处理等方面的问题。按照教学计划,“工程材料学”先行开设。因此,在相关课程设计中,有目的地提出材料问题,引导学生在更广的范围里选材,在更加深入的层面上分析材料性能,可以更好地调动学生自主探究材料科学的积极性,帮助学生把材料知识转化为初步的工作能力,克服课程知识的碎片化倾向。
四、结语
航空航天是现代科学技术的集大成者,该领域发展很大程度上取决于材料科学技术的进步。材料学是航空航天工程技术人员知识结构的重要组成部分。“工程材料学”要按照现代大工程观的要求组织教学,才能实现教学目标,提高培养质量。航空航天领域和材料科学技术发展,极大地丰富了“工程材料学”的教学内容。要根据学科领域的发展需要选择教学内容,按照理论实践结合、突出工程应用的要求构建知识体系。在教学工作中,应根据不同专业的培养要求,深入研究材料学的基本要求和各专业的发展方向,形成“公共知识+方向知识”的“工程材料学”课程结构,提高教学效率。统筹考虑专业教学与其他课程的联系,以及课程设计、工程训练、毕业设计等教学环节,以“工程材料学”课程为中心,注重课程的纵向推进和知识的横向联系,不断加深对材料学的理解和掌握,培养多角度研究分析、跨专业交流合作、多学科解决问题的能力。
作者:汪涛 周克印 单位:南京航空航天大学材料科学与技术学院
参考文献:
[1]朱张校,姚可夫.工程材料[M].北京:清华大学出版社,2023.
[2]周风云.工程材料及应用[M].武汉:华中科技大学出版社,2002.
[3]王少刚,郑勇,汪涛.工程材料与成形技术基础[M].国防科技出版社,2023.
航空航天概论论文范文第5篇
Technology, Department of Electrical and
Computer Engineering, USA
Missile Guidance and
Control Systems
2004, 675 pp.
Hardcover EUR 259.00
ISBN 0-387-00726-1
G. M.塞奥里斯 著
虽然导弹制导和控制系统的出现源自军事目的,但是这项技术已经应用于很多领域,比如机器人、工业过程控制和全球定位系统(GPS, Global Positioning System)。本书详细的阐述了这项技术的最新幕后,战略和战术导弹及其对给定目标的制导、控制和采取的策略。
本书论述了关于制导飞行的数学,涵盖了如下几个论题:导弹的空气动力学、导弹的数学模型、武器发射、全球卫星定位系统(GPS)、地形轮廓匹配(TERCOM, Terrain Contour Matching)、巡航导弹的力学化方程、以及弹道导弹制导。
全书共分7章:第1章回顾了过去和现在的制导导弹系统,以及现代武器的演化;第2章讨论了导弹通用运动方程,其中包括通用坐标系、刚体运动方程、D'Alembert定理、以及拉格朗日旋转坐标系;第3章阐述了空气动力学和系数,空气动力学的力和动量的处理,以及导弹寻找目标和制导自动化等问题;第4章处理了各种战略制导的各个重要技术问题,包括自动制导、命令制导、比例导航和扩充比例导航;第5章讨论武器发射系统和技术;第6章主要阐述战术导弹,包括经典双体问题和Lambert理论、隐式和显式制导、大气重入、以及弹道导弹的拦截;第7章关注巡航导弹理论和设计,主要讨论了巡航导弹导航的概念、地形匹配制导的概念、以及全球定位系统。每一章末尾都标明进一步阅读和学习的论文和书籍。除此之外,本书的几个附录也为读者提供了很必要的信息:附录A.几个基本参数;附录B.技术词汇表;附录C.同义词索引表;附录D.标准大气;附录E.导弹的分类及定义;附录F.过去和现在的导弹系统。
本书的读者必须熟悉微积分、常微分方程和一些现代控制论的知识,书中提供了很多实际的例子,使得概念更加易于理解。本书适合航空航天工程学生,以及从事航天制导技术和控制技术研究的工程师阅读。
丁丹,硕士生
(中国科学院计算技术研究所)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除