智能控制技术论文(精选5篇)

智能控制技术论文范文第1篇

关键词:智能化技术;电气工程;自动化控制;应用

智能化技术,是在我国科学技术不断发展中所研发出的新型技术手段,在智能化技术出现后,因其各种优势已经在我国各个领域当中被广泛的运用起来,尤其在电气工程自动化控制系统当中,随着被逐步的运用在电气工程的各项领域当中,为我国电气工程领域的发展奠定非常有利的基础。

1智能化技术的主要理论基础分析

在二十世纪五十年代人工智能就已经问世,通过几十年的不断研究与探索,智能化技术也被广泛的运用起来,在人们生活当中、工作当中都被人工智能化产品所占据,它们能够像人类一样有感应,能行动和思索,因其自身拥有高精度、高效率以及高协调性的特点,已经远超传统的控制技术,当前随着计算机的快速发展,能够有效的实现运用人的思维能力去模拟到机器人身上,在运用计算机编程语言技术,普及增加智能化模拟的可实施性,进而实现科技的快速发展。

2在电气工程自动化控制中应用智能化技术的主要意义

2.1能够对自动化控制模型进行简化

在电气工程自动化控制工作中,主要就是通过建立模型来实现的,但是因此模型相对比较复杂繁琐。例如,建立的模型与实际情况出现不符的情况或实际操作中出现与模型不统一的情况,对于这些问题来说一般情况下多以电气工程自身调节能力来进行处理,但在实际操作中,还是会出现一些无法预测和估计的问题,影响着电气工程自动化控制的正常运作。而在电气工程自动化控制中应用智能技术,能够在一定程度上去防止类似突发事件的发生,从而提升电气工程自动化控制工作的准确度。

2.2能够实现电气工程自动化控制的一致

电气工程自动化控制主要是以建立模型来实现的,而应用智能化技术在电气工程自动化控制中,能够避免模型复杂的问题,进而保障其控制工作的顺利完成,利用控制电气工程中的有关设备与数据,让电气工程自动化控制变得更加一致化,不仅能够提升电气工程自动化工作效率,还能改进电气工程自动化的整体服务质量。

2.3对电气工程系统控制水平进行提升

在电气工程系统控制中应用智能化技术,能够有效提升其控制水平,不仅能够控制电气工程自动化程序设备中的相应系统数据,并且还能对电气工程自动化安全隐患进行警戒,在一定的情况下避免自动化控制中出现不必要的问题,提升电气工程系统控制水平,为电气工程领域发展提供有利条件。

3在电气工程自动化控制中智能化技术的主要应用

3.1对电气工程自动化控制中的病因进行合理诊断

对电气工程系统进行病因诊断时,对于传统的诊断形式来说,是相对比较复杂且繁琐的,不仅仅对工作人员有着很高的要求,还无法对其病因进行精准的诊断,导致电气工程自动化控制中会出现一些无法避免数据问题等。而职能化技术则能够利用自身优势,对其病因进行有效的诊断,还能因其问题提出合理的解决策略,不仅能够有效找出病因,还能更好的提升其工作效率,因此电气工程自动化控制中要有效利用智能化技术,在对其设备进行情况的诊断,从而避免相关问题对工作的影响,更好的促进电气工程自动化控制工作有效进行。

3.2对电气工程的设计形式进行优化

在传统的电气工程的设计中,主要是通过工作人员进行反复实验和改良才能够完成,而在工作人员不能全面的考虑到实际情况时,就会出现一些复杂的问题影响正常工作,并且这些问题也不能得到及时的解决,而且在对电气工程进行设计时,对工作人员的要求也是非常高的,不仅要运用良好的设计知识和专业知识,也要拥有一定的综合能力,才能刚好的将该工作完成。而对于智能化技术来说,运用在电气工程自动化中,设计人员可以利用计算机网络或相关软件,对电气工程自动化控制的进行设计,这样不仅仅能够提升设计所用数据的准确性,还能够对设计的样式进行丰富,能够更好的解决数据问题,从而保证电气工程自动化控制工作的良好运作。

3.3实现自动化控制整个电气工程

电气工程控制系统中的环节有很多,所以,智能化技术的应用能够有效对整个电气工程进行自动化控制工作。智能化技术利用模糊控制、神经网络控制以及专家系统控制,来实现对电气工程的自动化控制,利用智能化技术实现对电气工程的全面控制,这样不仅能够保证该工作的顺利完成,还能大大提升其工作质量,增强其整体水平,也能为电气工程领域的发展奠定坚实有利的基础。

4结论

在电气工程自动化控制中应用智能技术,这不仅仅是一个非常大的成就,还是促进智能化技术在其他各个领域当中的良好应用,发挥其作用,更好的让智能化技术为我国经济发展奠定良好基础,并能稳定推动电气工程领域实现长期可持续发展目标。

作者:闫鹏 单位:包头市九原区住房保障和房屋管理服务中心

参考文献

智能控制技术论文范文第2篇

关键词:机电一体化;系统;智能控制;应用

中图分类号:TH-39 文献标识码:A

1 对智能控制系统进行分类

所谓智能控制系统主要是一种多项控制技术,智能控制的正常运行需要仰仗于各类智能控制的子系统,进而构建出集成、混合的控制系统,只有这样,众多的智能技术才能够在智能系统中发挥其应有的作用。当下,各个行业所采取的控制系统主要有以下几个类别:(1)学习控制系统,类似于人类大脑的功能,人类的学习能力是智慧的主要表现形式,而学习控制系统主要通过对结构进行认知、辨别以及调整以后,利用对数据的处理及对信号的循环输入以保障其良好的运行效果,该系统还能结合一些基本信息自动地进行控制。(2)分级控制系统,该系统采取分级递进的智能模式,主要利用自组织控制、自适应控制等条件。再改控制系统中主要表现了三个级别,即:协调级别、组织级别以及执行级别,而对于每个级别来说,他们都具备该级别独有的作用。(3)专家控制系统,这种智能系统主要是将技能、知识、经验等因素进行有机的融合,并将这些因素整合到计算机系统当中,系统会根据相应的程序指令进行相应的操作。在该系统中,包括了众多的理论内容,这些理论内容都为智能系统在对实际问题进行处理时提供了一定的帮助,让处理后得出的结果具备较高的性能。(4)神经网络系统。当前,人工神经网络控制系统仍旧是运用最多的系统,该种智能系统的网络结构主要借鉴了人工神经元、人工细胞的相关技术,智能控制和模仿真人是该系统的主要功能。

2 将智能控制运用到有关机床

机电一体化是当今工业中的一项重要技术,智能化则是当今科技的主要发展趋势,在机电一体化当中发挥着巨大的作用,智能控制的主要表现形式之一就是数控机床与机器人的智能化。

对于数控机床来说,衡量机电一体化技术的重要指标便是精度。在陈旧的数控机床设备中,由于没有对智能技术进行过多的融合,进而导致产品加工不理想以及机床的精度不达标,智能数控系统中运用了许多RISC芯片以及多CPU控制系统,这些芯片以及系统将大幅度提高机床的精度。

在数控系统最初设计的过程中,大多数运用到的设计方法是模块化设计,其具有较为良好的裁剪性能,而且功能所设计的方面非常之广,针对各类不同的机电一体化生产基本上都能够达到要求,而在群孔系统的效果控制中,对于相同或者类似的群孔系统可以对各种操作流程进行参照,进而保证系统调整符合相关要求。

系统的操作程序是正常运行的重要指令,根据所需要加工产品的精度和尺寸对操作程序进行编程,才能够让产品加工以后达到预期的智能效果,从前,产品加工都是在普通车场进行,操作流程则需要依靠人工进行控制,所以要求操作工人具有较高的技术水平,而在当今的数控车床中,我们只需要依据相关的程序,对机器进行调试之后就可以进行加工工作,这恰恰是智能化的重要表现。

3 在设备装置中的智能元件

将智能控制运用到机电一体化系统中,不仅可以促进系统控制形式的调整以及转变,更加可以保障系统实现自动控制,机电一体化的典型设备就是数控机床,数控机床在元件的控制上更加能够反映出其发挥的具体作用。

数控机床中最基本的装置就是平面显示器,它的主要作用是显示相关的程序指令,进而让机床的操作人员对机床的运行状态更加深入的了解,在机床改造技术更新换代的同时,智能元件的种类也在不断翻新变化,近些年来出现的FPD平板显示技术具有能耗低、重量轻、显示大等诸多优势,完全可以应对最基本的智能操作。

而硬件模块则是保障数控机床达到指标的主要装置,生产商采用相关的智能技术,加之融合相关的智能元件创造出了良好的模块结构,譬如存储器、CPU、PLC、位置私服等,在具体的操作过程中进行了对模块形式的删减,建立了不同性能的模块。

在数控机床进行加工时,利用动态监控系统,完全可以将各种不同的现代化技术进行融合,这其中包括网络技术、计算机技术、多媒体技术、模拟技术等。有的时候甚至可以将一些经常用的控制装置改造成具有严密制造过程的控制体系,进而推进智能化进程。而网络技术是当今智能控制中应用最广的一项技术,它可以通过机床联网的形式利用计算机进行编制、输入、调节程序、执行命令等工作,进而实现无人操作的智能化控制。而网络装置主要包括的是数据线以及计算机,只要具备这两样装置,就可以完全将数据准确地显示在机床面板上。

4 智能控制的主要特点

智能控制是多领域的交叉学科,从最初的“二元论”到后来的“三元论”发展至今,已经成为“四元论”,智能控制已经得到了长足的发展,我们有理由认为,智能控制理论的根基是自动控制理论、信息论、运筹学以及人工智能的交叉。其具有相对完善的理论基础。

相比于传统理论,我们可以认为智能控制对对于传统理论的延伸和发展,也可以说传统理论是智能控制所包括的一部分,是智能控制的最初形式。智能控制具有分级、开放、分布的结构特点,具备很强的信息处理能力。智能控制追求的是对系统的全面优化。而智能控制的主要任务和所针对的对象具有不确定性,传统的控制方法在通常情况下仅仅适用于单一任务和精确的数学模型。而只能控制系统的重点在于对数学模型符号、环境以及描述的识别,在数据库的设计上,它与传统控制常用到的运动学方程、函数等数学描述方法有着本质上的差别。只能控制具有混合控制的基本特点,该系统能以数学广义模型来表述混合的控制过程,采用定性决策以及定量控制结合的控制方式。

智能控制系统对于传统控制理论并不加以排斥,智能控制当中往往包含常规控制,而智能控制同样经常利用常规控制的基本方法来对低端的控制问题加以解决,并对常规的控制方法力图扩充,而且智能控制系统具备非常强的学习功能、组织功能以及适应功能,能够克服环境所具有的不确定性以及复杂性,最终实现有效控制。

结语

现如今,智能控制已经成为机电一体化系统中被应用最多的控制方法,智能控制以其独有的高水平、高效率、高性能的控制优势对传统的控制方法造成了猛烈的冲击,并大有取代之势,文章中提到的数控机床仅仅是机电一体化技术中的一个典型代表,在现代工业生产生活中,智能控制在机电一体化系统当中的运用还有诸多方面,人们发现,智能控制的控制效能具有非常明显的优势,其优越性也越来越多地得到了人们的认可。

参考文献

智能控制技术论文范文第3篇

【Abstract】Due to the development and application of advanced technology, intelligent technology is gradually applied in power automation system. This can not only make the automation of power system strengthen, but also make the power automation system to the intelligent direction. This paper analyzes the application of intelligent technology in power system automation, and discusses the application of intelligent automatic control technology in power system, designed to enhance the degree of automation of concentration system

【关键词】电力系统自动化;智能技术;自动化控制

【Keywords】 power system automation; intelligent technology; automatic control

【中图分类号】TP311.52 【文献标志码】A 【文章编号】1673-1069(2023)03-0118-02

1 引言

电力行业中的电力系统已经基本能够实现自动化操作与控制,但与严格意义上的智能化还存在着一定的差异,电力行业的发展也受到不同程度的影响和制约。对此,将智能技术应用于电力系统自动化控制中,不仅能够提升电力系统自动化程度,更能使其向智能化方向发展和迈进。对于“电力系统自动化控制中的职能技术应用”的研究,就具有极大的现实意义。

2 电力系统自动化控制中的智能技术应用现状

现阶段,电力行业也得到了空前发展,电力行业中先进科技的应用程度较深,而智能技术在电力自动化系统的应用也在不断深入和完善。智能技术的应用,仍具有不同程度的局限性,如应用时间较短,系统协调能力不足,无法达成资源的完全共享,致使电力系统自动化程度较低等。同时,由于我国电网技术起步较晚,且理论多于实践,使得无论是从研发或应用上,均与国外发达国家具有一定的差距。但随着电力行业的进一步发展,电力自动化系统正逐步向智能化电力系统转变,这不仅是由单一化向多元化转变,更是电力行业可持续发展的必经之路。

3 电力系统自动化控制中的智能技术应用

3.1 模糊理

通过语言变量及逻辑推理理论的应用,使电力设备及电力系统等达到模拟练习的效果,此种情况即为模糊理论。将模糊逻辑应用在电力自动化控制系统中,能够使电力系统自身具备健全且极为系统的逻辑推理能力,并通过此种模糊推理的方式,将人类的决策做进一步的模拟,并通过电力自动化系统得以发送指令并实现操作[1]。在此情况下,技术数据能够依据规则,对逻辑进程进行严格的控制,即通过模糊理论及逻辑推理,能够模拟人的决策,对电力自动化系统进行前期的模糊输入或直观推理,使电力自动化系统完成决策工作。对于电力自动化系统来说,其能够将模糊理论所发出的模糊指令,简单识别为人力的逻辑推理与决策,并将模糊理论等同于进行操作的人员大脑。

3.2 神经网络控制

此处所说的神经网络控制由来已久,自20世纪40年代初期,神经网络控制便以开始进入众多科研人员的视野和认知当中。但此种神经网络控制的研发,却未能在接下来的时间里,得出较为骄人的研究成果,直至人们对神经网络的需求逐步增加,才使得此种慢慢搁浅的研发项目重新受到人们的重视与关注,并通过全新科技的应用,在神经网络控制课题方面,取得了极为重要的研究成果[2]。这也为后期神经网络控制系统的建立,打下了坚实的基础。所谓神经网络控制,即采用特定的方式,将数量众多的神经元进行紧密连接而形成的。并且神经网络具有特定的、进行权重连接的信息,并能够依据特殊的学习算法将权重信息进行不断调整,从而达成自m维空间中至n维空间中的映射。而且,此种神经网络所形成的映射为复杂化的非线性映射[3]。现阶段,对于神经网络的研发方向为建起神经网络模型,以及与其所对应的神经网络学习算法。此外,神经网络硬件的实现问题,也是现阶段神经网络研发中重要的课题内容之一。

3.3 线性控制

线性控制,也可称为线性最优控制,此种研究是建立在优化理论基础上的研究形式,也是现代控制理论中重要的构成部分。并且,此种线性控制形式,也是当前阶段现代控制理论中研发深入程度最大,且最为成熟的理论控制形式。这也使得线性最优控制成为了当前应用最为广泛的控制形式之一[4]。部分研究线性最优控制的科研人员,通过不懈的努力,终将线性最优控制的理论在实践中得以研发及应用,并明确论述出线性控制理论的应用依据。即通过最优控制中的励磁控制,能够使长距离输电线路的输电能力得到进一步加强,并能使动态品质得到显著的改善。并且,经过长期、反复的试验得出结论:将此种最优励磁控制方式应用与大型设备之中,所起到的效果最佳。除此之外,通过理论与实践的充分结合,也促使制动电阻器通过水力发电时间达成最优控制模式得以实现,并在电力系统中得到了普遍的应用。

3.4 专家系统

由于智能技术的融入而形成的专家系统,在电力自动化系统中被广泛应用。这其中涉及的方面众多,不仅包括电力系统性能的恢复、应急处理系统的应用、电力系统各种状态的调试与切换等,更涵盖了系统电源状态的识别、故障的隔离与排除,以及短期的电力负荷警示等内容。而其中专家系统的约束力较强,且在智能化程度上仍有待提升。其可进行智能化的操作,但却无法对各类操作融入模糊理论,无法对适配功能形成深入的认知,这也使得其分析问题、解决问题,以及学习能力方面都具有明显的局限性。同时,由于分析问题与解决问题的能力缺乏,也导致此种专家系统对较为复杂问题的组织能力也明显不足。

3.5 集成智能系统

对于集成智能系统而言,其不仅包括智能控制方法与智能系统,还涉及与电力自动化系统进行深入的交联。并且,此种集成智能系统是现阶段所应用到的较为先进与形成规模的控制形式。现阶段,电力自动化系统中所应用到的集成智能系统研发程度较低,但通过专家系统与神经网络相融合模式的提出,使得继承智能系统在研发上进入了全新的阶段,同时也为集成智能系统的进一步研发创造出众多可供参考和借鉴的内容。此外,随着智能技术在电力自动化系统中的深度融入,也使得对于集成智能系统的研发上升到全新的高度。此种全新的继承智能系统,即是将智能技术在电力自动化系统中所实现的功能予以融合,并采用可起到模M人类决策意识的模糊逻辑理论作为系统的基础架构,使得集成智能系统必将能够实现最大程度的智能化,使电力自动化系统得到更为完善的发展。

4 结语

综上所述,将职能技术应用与电力系统自动化控制中,能够在提升电力系统自动化程度的基础上,进一步增强电力生产、运输以及管理的效率,使电力企业在缩减成本的同时,使自身的经济收益得以显著提升,将极大地促进电力行业的发展进程,使电力行业运用全新的技术手段,在激烈的市场竞争中立于不败之地。

【参考文献】

【1】智能技术在电气自动化控制中的应用探究[J].电子技术与软件工程,2023(07):259.

【2】张智,张红.关于电力系统自动化中智能技术应用的分析[J].科技与企业,2023(16):155.

智能控制技术论文范文第4篇

关键词:机电一体化;智能控制;应用;研究

Abstract: This article from the intelligent system and electromechanical integration point of view, focus on the two fusion applications, application of intelligent control of mechanical and electrical integration system.

Keywords: mechatronics; intelligent control; application; research

中图分类号:TH-39文献标识码:A文章编号:2095-2104(2023)

智能控制技术是在传统控制技术的基础上,利用先进的计算机技术与网络通讯技术发展起来的一项技术,是二十一世纪机电一体化技术发展的最新方向。智能控制技术的优劣在很大程度上影响着机电一体化系统的正常运行。通过模糊系统、遗传算法、专家系统及神经网络等四项技术的应用,我国机电一体化技术非常顺利地实现了智能化的控制,从而促进了我国机电一体化系统的健康长远发展。

一、关于机电一体化的概述

(一)机电一体化的含义。

所谓机电一体化,又称机械电子学,是指将电工电子技术、信息技术、接口技术、机械技术、微电子技术、传感器技术、信号变换技术等多支技术进行有机地结合,并综合应用到实际生产生活中去的一项综合性的技术。

(二)机电一体化的基本内容与组成要素及原则。

机电一体化的基本内容包括以下几个方面:一是机械技术,二是计算机与信息技术,三是系统技术,四是自动控制技术,五是传感检测技术,六是伺服传动技术。机电一体化的组成要素包括:一是结构组成要素;二是运动组成要素;三是感知组成要素;四是职能组成要素。机电一体化的四大原则包括:一是结构耦合;二是运动传递;三是信息控制;四是能量转换。

二、关于智能控制

(一)智能控制的含义。

所谓智能控制,就是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术,是用计算机模拟人类智能的一个重要领域,主要面向比传统控制更为复杂、多样的控制任务和控制目的,为当今社会的发展带来了更为广泛的适应空间,解决了传统控制无法实现的复杂系统的控制。传统的控制只是智能控制中的一个组成部分,是智能控制最底层的阶段。智能控制是由多个学科相互交叉所形成的学科,它的理论基础包括信息论、自动控制论、运筹学及人工智能等内容。

(二)智能控制的特征。

智能控制具有以下特征:一是智能控制的核心在高层控制,即组织级;二是智能控制器具有非线性特性;三是智能控制具有变结构特点;四是智能控制器具有总体自寻优特性;五是智能控制系统应能满足多样性目标的高性能要求;六是智能控制是一门边缘交叉学科;七是智能控制是一个新兴的研究领域。

(三)智能控制的类型。

一是集成或者混合(复合)控制;二是分级递阶控制系统;三是专家控制系统(Expert System);四是人工神经网络控制系统;五是学习控制系统;六是进化计算与遗传算法;七是组合智能控制方法等。

(四)智能控制发展的趋势。

智能控制系统具有极强的学习功能、组织功能及适应,其在机电一体化方面的广泛应用是当前智能控制的一大发展趋势。遗传算法、专家系统及神经网络是应用在机电一体化系统中的最常见的四种技术,它们之间存在着相互依存、相辅相成的关系。近年来,智能控制技术在国内外已有了较大的发展,己进入工程化,实用化的阶段。但作为一门新兴的理论技术,它还处在一个发展时期。然而,随着人工智能技术,计算机技术的迅速发展,智能控制必将迎来它的发展新时期。

三、智能控制在机电一体化系统中的应用

从20世纪90年代后期,机电一体化技术向智能控制发展,开辟了机电一体化技术发展的新篇章。机电一体化的未来发展必将是以智能化作为主要方向,智能控制的优劣直接决定机电一体化系统的整体水平。

(一)智能控制在机械制造过程中的应用。

机械制造是机电一体化系统中的重要组成部分,当前最先进的机械制造技术就是将智能控制技术与计算机辅助技术有机结合,向智能机械制造技术的方向发展。其最终目标是利用先进的计算机技术取代一部分脑力劳动,从而模拟人类制造机械的活动。同时,智能控制技术利用神经网络系统计算的方法对机械制造的现状进行动态地模拟,通过传感器融合技术将采集的信息进行预处理,从而修改控制模式中的参数数据。智能控制在机械制造中的应用领域包括:机械故障智能诊断、机械制造系统的智能监控与检测、智能传感器及智能学习等。

(二)智能控制在数控领域中的应用。

随着科学技术的发展,我国的机电一体化技术的发展对数控技术提出了更高的要求,不仅需要完成很多的智能功能,还需要扩展、模拟、延伸等新的智能功能,从而使得数控技术可以实现智能编程、智能监控、建立智能数据库等目标,运用智能控制技术可以实现这些目标。比如说,利用专家系统可以数控领域中难以确定算法与结构不明确的一些问题进行综合处理,再运用推理规则将数控现场的一些数控故障信息进行推理,从而获得维修数控机械的一些指导性建议。

(三)智能控制在机器人领域中的应用。

机器人所具有非线性、强耦合、时变性的特征主要体现在动力系统中,在控制参数的系统中机器人具有多任务及多边变性的特征,这些特征适合智能控制技术的应用。当前智能控制技术在机器人领域中的应用主要表现在以下几个方面:一是机器人手臂姿态及动作的智能控制;二是机器人在多传感器信息融合与视觉处理方面的智能控制;三是机器人在行走路径与行走轨迹跟踪方面的智能控制;四是通过专家控制系统对机器人的运动环境进行定位、监测、建模及规划控制等方面的探究。

(四)智能控制在建筑工程中的应用。

智能控制在建筑工程中的应用主要表现在以下几个方面:一是智能控制在建筑物照明系统中的应用,它主要通过通信与计算机控制的联网,对每一个时段的照明系统进行控制,主要表现在对照明时间、照明系统的节能、照明逻辑方面的智能控制;二是对建筑物内的空调进行智能控制,通过比例积分调节器闭环的方式对空调在夏季与冬季使用时的模式进行设置,可以智能地调节空调的风阀,在确保建筑内空气质量的同时,减少能量的浪费。

四、结语

随着微电子技术及超大规模的集成电路的发展,我国的机电一体化技术越来越成熟,在工业与农业的发展中发挥着至关重要的作用。但在实际的生活中,很多机电一体化应用中的农业与工业对象具有多层次、不确定性、非线性等特征,给机电一体化的发展带来了很大的难题。智能控制系统的出现及应用,为机电一体化的长远发展创造了良好的外部环境。因此,智能控制在机电一体化方面的应用越来越受到人们的重视。

参考文献:

[1]董勇,谢士敏.机电一体化系统中智能控制的应用体会[J].数字技术与应用,2023(10).

智能控制技术论文范文第5篇

关键词:人工智能;电气;自动化

人工智能技术是随着计算机技术发展逐步形成的,是基于人的智能为基础理论进行研究和探索,其目的是开发出一种能够具有人类智能的智能机器,在当前最为常见的人工智能方式有机器人、语言识别和图像处理系统。人工智能是计算机科学的一个分支,是计算机发展中利用相应的技术手段对各种信息资源进行辨别和分析的基础。随着社会发展中,人们对电力需求的日益增加,使得在电力系统发展的过程中,对其控制方式也在逐步的提高。要实现其良好的控制措施和控制手段,传统的人为控制方法早已无法满足当前社会发展的需求,这就使得在电气施工中对人工智能技术要求不断增加,从而提高电气设备运行质量。实现机械的自动化,能够使得机械在进行运转的过程中脱离人类的控制自我进行调节和运行,从而降低人力成本和管理成本。积极运用人工智能的新成果无疑有利的,是基于当前电气自动化学科应用和分析过程中实现其发展的前提和关键,更好死社会发展中智能技术手段进行分析与应用的结局。

1、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。 当今社会,计算机技术已经渗透到生产生活的方方面面,计算机编程技术的日新月异催生自动化生产,运输,传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用, 以解决用传统的方法难以解决的复杂系统的控制问题。

当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2、人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。

(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时.通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。

总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。

3、人工智能的应用现状

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。

3.1 优化设计

电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

3.2 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.

3.3智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开.但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法.因而它的应用实例最多。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除