自动控制理论论文(精选5篇)

自动控制理论论文范文第1篇

(一)计算机病毒的入侵。病毒入侵是计算机管理过程中经常遇见的情况,计算机病毒主要分为优盘病毒与网络病毒两种形式,网络病毒又被分为多种形式,如可以不经允许就进行自身复制的蠕虫病毒,隐藏性的特洛伊木马病毒等。这些病毒的侵入轻则会使计算机的运行速度降低,重则会损坏计算机系统,使计算机中存储的数据丢失,甚至损坏主板。计算机病毒的危害力度是不可估量的,当其进入某个运行程序中时,便会扩散到整个计算机系统当中。

(二)人为因素。人为因素主要分为两种,一种是当人际关系出现不融洽现象时,有人利用毁坏计算机中重要信息,或对计算机中的相关数据进行篡改、删除的手段进行恶意报复,达到制造麻烦的目的的有意行为;另一种是指计算机操作或管理人员由于自身技术水平较为低下,在对计算机的操作过程中产生了错误操作导致计算机安全配置不当等无意行为。但无论是有意还是无意,在众多可能的人为因素面前,计算机仍然面临着许多安全威胁。

(三)相关法律规定不完善。相关法律体系的不健全现象无法为计算机安全管理提供有效的保障,即使国家已经对其加以关注,制定了相关的法律,但这些法律法规还是存在着许多漏洞,许多不法分子仍然在法律的制约下轻而易举的钻了空子。因此,国家还需对计算机安全保护的问题加以重视,使不法分子没有可乘之机。

(四)系统运维管理不规范。计算机的运行维护管理主要包括制度、机构建设、人员三个方面。制度管理主要是使得计算机操作人员或管理人员在对计算机进行操作时有理可循,有据可依,不会使计算机系统出现无序运行的现象,避免安全漏洞的产生;机构建设管理则是在计算机系统安全出现问题时可以将其有效解决的重要途径,对于防止问题频发起着关键作用;内部人员对单位计算机的操作情况极为熟悉,因此加强内部人员的管理是防止人为因素中有意破坏行为的关键。但在许多单位都存在着系统运维管理不规范的行为,把握不好制度、机构建设与人员管理三者的关系,对计算机安全产生威胁。

二、计算机控制自动化中的安全管理技术

(一)网络加密。计算机网络加密技术是对重要信息数据进行保护的重要手段,在信息传递的过程中采用乱码的形式,之后再进行信息数据的还原。其主要包括算法与密钥;两种元素,算法用来生成密文,密钥用来解密、编码。

(二)隐通道技术。运用隐通道可以实现由低安全级别向高安全级别主体发送信息,且不易被检查与控制,用户可以以反向思维进行信息传递。隐通道技术的运用可以有效的预防重要信息、数据、文件的泄露。

(三)水印技术。在不影响原内容的情况下,通过某些算法将需要隐藏的信息加印到原内容载体上,这种水印技术的运用能够有效的避免非法盗取信息的现象发生,也是进行数据信息保护的重要研究发展方向。

(四)防火墙技术。防火墙技术为网络通信进行访问控制,对每一个连接进行检查,防止网络遭到外界的干扰。在防火墙使用的过程中一定要保证使用方法的准确性与防火墙设计的合理性,只有这样才能保障网络的安全性,才能将不安全服务进行屏蔽,降低风险,提高网络环境的安全度。

三、计算机安全管理工作中的防范措施

(一)提高管理人员素质。在计算机的安全管理工作中人的作用是非常关键的,对于相关管理人员进行工作技能的培训,加强对其思想道德、职业道德的培养,使其加强对计算机安全管理工作的重视。计算机安全管理工作是不可以仅靠控制自动化来完成的,因此发挥人的主观能动性对计算机安全进行管理是非常必要的。

(二)完善计算机运维管理机制。实现计算机网络系统的绝对安全是不可能的,只有建立具有科学规章制度,高效管理机构,优秀管理人员的计算机运维管理机制才能为其安全性提供保障。日常工作中可以提前对计算机系统可能出现的问题进行预测,并根据预测结果制定出补救措施,使计算机系统出现故障时能采取积极有效的补救措施,将损失降到最低。此外,还要对管理人员的工作流程进行严格的要求,制定奖罚措施,且落到实处,避免人为因素导致计算机无法正常运作的现象发生。

自动控制理论论文范文第2篇

关键词:本机振荡器直接数字频率合成自动频率控制脉内测频

雷达系统根据其工作频率一般分为米波雷达、分米波雷达和厘米波雷达,其接收机通常是超外差形式的。分米波雷达和厘米波雷达由于其工作频率较高,一般都有自动频率控制(AFC)系统,控制本振频率自动跟踪发射频率的变化,或者控制发射频率自动稳定在本振频率对应的频率点上,保证雷达接收机的中频频率稳定。但是传统的模拟式单环路或双环路AFC系统由于受模拟电路本身的局限,使得AFC的跟踪速度慢、跟踪频率范围窄、精度低,甚至有可能出现错误跟踪的情况;此外,控制本振的自频控雷达由于在本机振荡器上加装了频率调整装置,影响了本振的频率稳定度,这对动目标雷达而言是难以接受的。米波雷达由于其工作频率较低,基本上没有自动频率控制系统,但是米波雷达的发射机工作频率和接收机本机振荡频率由于环境温度、电源电压和负载变化而发生一定的变化,其变化范围从几十千赫兹到数百千赫兹,通常在500~600kHz之间。虽然由此造成的中频频率变化量的绝对值不会超出中频放大器的通频带范围(中频放大器的通频带通常≤1MHz),但是数百千赫兹的变化量使回波信号不能得到最有效的放大,造成雷达接收机技术、战术性能降低,此时即使加装DSU(DigitalStableUnit)设备,也由于中频频率漂移的影响,使DSU的性能无法得到最有效的发挥。

应用锁相环频率合成技术实现雷达自动频率控制系统已经是比较成熟的技术方案,这种方案的应用解决了非相参雷达的自动频率跟踪与本振频率稳定度之间的矛盾,但是锁相环固有的大惯性、大步进间隔和非线性误差却严重地限制着锁相环自动频率控制系统的性能,使其无法满足高速、高频率分辨率、大带宽的要求。

DDS技术是近几年来迅速发展的频率合成技术,它采用全数字化的技术,具有集成度高、体积小、相对带宽宽、频率分辨率高、跳频时间短、相位连续性好、可以宽带正交输出、可以外加调制的优点,并能直接与单片机接口构成智能化的频率源。基于DDS技术的自适应米波雷达自动频率控制系统是新一代的自动频率控制(AFC)系统,它以直接数字频率合成技术(DDS)为基础,以单片机为控制核心,通过高速高精度脉内频率测量模块对雷达发射频率进行精确测量,然后由单片机控制DDS,对发射频率进行搜索和跟踪。因此它是一种易于实现的数字式智能化自适应频率控制系统。

图2DDS频率合成模块结构图

1系统组成及工作原理

基于DDS技术的自适应米波雷达自动频率控制系统主要由高速脉内频率测量模块、DDS频率合成模块、单片机和包括频率显示、控制键盘的人机接口模块组成,如图1所示。

系统采用高速高精度实时脉内频率测量技术,利用频率稳定度高达10-9的高稳恒温时标对频率进行倒计数法测量,由单片机对测量结果进行分析处理,并控制DDS频率合成模块,完成对发射频率的搜索和跟踪。系统中除了DDS输出后的滤波、放大电路采用模拟电路外,其它全部采用高速数字电路,并结合了单片机具有的可编程能力,使系统避免了传统模拟式AFC的缺陷,能够实现更加灵活的控制。

雷达开机后,系统首先工作于搜索模式:单片机控制DDS频率合成模块输出本振频率的最低值,与从发射机耦合过来并经过衰减后的发射脉冲频率混频,取出下变频后的中频信号,经过频率测量模块测量后将结果送入单片机,单片机若判断频率测量结果不是规定的中频频率值,则控制DDS频率合成模块将输出的本振频率按规定的步长(通常是频率测量系统的频率分辨率)调高,重复此过程,直到频率测量系统测量得到的频率值为规定的中频频率值为止。若搜索过程中本振频率达到上限时仍未搜索到规定的中频频率值,则返回到本振频率最低值,重新开始新一轮的搜索。系统一旦搜索到规定的中频频率值就进入跟踪状态。

在跟踪状态,频率测量模块对每一个发射脉冲频率与本振频率下变频得到的中频脉冲频率进行实时精确测量,在发射脉冲结束时将测量结果送入单片机。单片机立即根据测量结果计算出响应的本振频率调整量,并控制DDS频率合成模块调整输出频率,保证在目标回波信号到达接收机时,本振信号已经调整到与该发射脉冲频率对应的频率点上,使目标回波信号下变频后的频率值为准确的中频频率值,从而保证目标回波信号能够得到最有效的放大。

跟踪模式实质上是一个自适应的控制过程:某一发射脉冲的频率比前一发射脉冲的频率升高(降低)在本振频率不变的条件下,中频频率升高(降低)频率测量模块的测量结果升高(降低)单片机得到测量结果后控制DDS频率合成模块,使之输出的本振频率相应升高(降低)中频频率降低(升高)到规定值。

2硬件结构

2.1DDS频率合成模块

DDS频率合成模块以DDS芯片AD9854为核心,包括滤波电路、放大电路和与单片机的接口电路,图2是其组成框图。

AD公司推出的AD9854是DDS芯片中的典型代表之一,它具有300MHz的内部时钟,4~20倍的内部可编程倍频器使外部输入的时钟信号频率可以从15MHz到75MHz,另外具有100MHz的并行接口总线,内置正交双通道DAC输出,具有多种编程工作方式,能产生线性调频信号和非线性调频信号等复杂信号。

AD9854采用CMOS结构,工作电压为3.3V,而单片机AT89C51工作在5V电压下,其总线电平是5V的TTL电平,为保证AD9854的正常工作,必须经电平转换后再与AD9854接口,AD9854的时钟信号也必须经过电平转换后送到AD9854的时钟引脚。AD9854有正交双通道DAC输出,每一个通道都是反相的互补输出,经MAX436放大后滤波,然后再经MAX436放大到雷达要求的本振电平。两路输出中的一路用于和发射脉冲混频,将下变频后的中频信号送到频率测量模块进行频率测量,系统已经知道DDS频率合成模块输出的本振频率,测量出发射脉冲的中频频率就能计算出发射频率;另一路作为接收机的本振信号。

根据奈奎斯特采样定律,当DDS系统的时钟为300MHz时,其输出频率的上限是150MHz,在工程应用中通常只使用到时钟频率的40%,即120MHz。某型米波雷达的本振频率上限略高于120MHz,经查阅AD9854的数据手册,其输出频率能够达到理论的150MHz;同时经实验证实,AD9854能够在雷达本振频率上限值处稳定工作,且输出信号质量完全可以满足雷达系统对本振的要求。

2.2高速高精度脉内频率测量模块

高速高精度脉内频率测量模块采用倒计数法进行频率测量,主要由下变频混频器、滤波整形电路、计数器T0、计数器T1和时序控制电路组成。图3是其结构的组成框图,图4是倒计数法频率测量的时序图。

倒计数法测频是用被测信号的N个周期形成一个计数门时间T=N·Tx,在T时间内由时标F0计数,这样一来测频就相当于测量门宽T,T的最大量化误差是T0,Tx的最大量化误差是T0/N。

某型雷达的发射脉冲的宽度是13μs,考虑到其发射机是单级振荡式发射机,每个脉冲在起振和停振的过程中振荡不稳定,因此取中间的10μs作为测频区间。该型雷达的第一中频频率为30MHz,在正常工作时,发射脉冲与本振信号下变频的输出频率应该是准确的30MHz,在10μs的测频时间内应有300个脉冲,即可取N=300;高稳定的时标的频率是100MHz,T0=10ns,相应的Tx的最大误差是T0/300=1/30ns,据此可计算出测频的分辨率是30kHz,相对于雷达中频放大器接近1MHz的带宽而言,此指标完全能够满足雷达系统的要求。用频谱分析仪实际测得的系统跟踪误差如表1所示。

表1实际测得的系统跟踪误差表

发射频率/MHz147.000147.500148.000148.500149.000149.500

本振输出频率/MHz116.999117.495118.008118.492118.990119.493

跟踪误差/kHz-1-5+8-8-10-7

发射频率/MHz150.000150.500151.000151.500152.000152.500

本振输出频率/MHz119.995120.490120.990121.510122.005122.500

跟踪误差/kHz-5-10-10+10+50

模块的工作过程是:当雷达触发脉冲到来时,时序控制电路打开计数器T,发射脉冲随后到来,经下变频、滤波、整形后转换成TTL方波作为计数器T的时钟。当计数器T计到第32个脉冲时,时序控制电路打开计数器T0,T0开始对高稳定时标计数;当计数器T计到第332个脉冲时,时序控制电路关闭计数器T和T0,并通知单片机已经完成一次频率测量,单片机取走测量结果,并对硬件电路复位,准备下一个周期的测量。

2.3高稳定度恒温时钟模块

本机振荡器的频率稳定度是影响雷达接收机性能的关键性指标。由于DDS频率合成方法的输出频率稳定度仅仅取决于其时钟的频率稳定度,因此选用频率稳定度高达10-9的恒温晶体振荡器作为整个系统的时钟。恒温晶体振荡器输出的100MHz高稳正弦波经放大后整形为标准的TTL方波,一路作为频率测量模块的时间标准,另一路经F161分频为25MHz的TTL方波,经电平转换后作为AD9854的外部时钟信号,利用AD9854内部的可编程倍频器倍频12倍使AD9854工作在300MHz的内部时钟频率下。高稳定度恒温时钟模块组成框图如图5所示。

3软件结构

单片机是整个系统的控制核心,可以充分利用软件可编程控制的优势对系统进行灵活有效的控制。图6是单片机的软件框图。

通电以后单片机首先进行初始化,然后设置DDS模块的工作模式等参数,再进行时序控制电路的复位并对所有计数器进行清零操作。随后单片机不断查询测量完成信号。当时序控制电路在雷达触发脉冲的作用下完成一次测量时?熏就通过该信号通知单片机,单片机一旦查询到测量完成便立即读入测量结果。然后进行分析,是标准中频频率时不进行本振频率的调整,直接准备下一脉冲周期的测量,若不是则计算所需的频率调整量,控制DDS频率合成模块进行频率调整,然后再准备下一脉冲周期的测量。

搜索和跟踪过程的区别主要在于计算频率调整量的方法不同,其它流程基本一致。

自动控制理论论文范文第3篇

【关键词】分层递阶控制理论;自动化;电力系统

随着电力业的发展以及科学技术的进步,电力系统的结构组成及运行方式越来越复杂多变,对电力系统的可靠性及运行的经济性都提出了更高的要求。近年来,控制技术在不断地拓展,控制方法也越来越多样化,尤其是智能控制技术,在电力、冶金、化工、建材等行业得到了广泛的应用。本文探讨了职能控制技术在电力系统中的应用。

一、分层递阶控制理论

(一)分层递阶控制理论产生及发展

1977年,Saridis在针对机器人控制提出了一种智能控制的三级递阶结构。该思想在智能控制中有广泛应用,并进一步推广到了结合信息融合的集散递阶智能控制系统。分层递阶是人们分析和组织复杂系统的一种常用方法。无论是信息分析、还是行为控制,都有其层次性,在高层负责宏观的信息和决策,在低层负责具体的数据和控制。其基本控制原理是精度随智能降低而增大,即IPDI(Increasing Precision with Decreasing Intelligence)原理。分级递阶控制系统是由一个三层结构组成的,三层结构的主要内容包括组织级、协调级和执行级三个层次。分级递阶控制系统的结构示意图见图1。

1.组织级

组织级代表控制系统的主导思想具有最高的智能水平,负责整个系统的推理、规划、决策、长期记忆、信息交流,并由人工智能起主导作用,主要进行基于知识的各种信息处理和决策。

2.协调级

协调级为组织级和执行级之间的连接装置,涉及决策方式的表示,主要负责将组织级的指令进行整合分配成为各项子任务,并将任务的执行信息反馈出来,由人工智能和运筹学起主导作用。

3.执行级

执行级是智能控制系统的最低层次,要求具有最高的控制精度,并由常规控制理论进行控制,一般是由多个硬件控制器组成的,负责具体过程的控制。

(二)仿人智能控制

我国著名学者周其鉴、李祖枢教授提出的仿人智能控制理论(HSIC)是分层递阶控制理论的一个重要发展分支。仿人智能控制理论(HISC)研究的基本方法是:从分级递阶智能控制系统的最低层(运行控制级)着手,充分应用已有的控制理论成果和计算机仿真结果,直接对人的控制经验、技巧和各种直觉推理逻辑进行测辨、概括和总结;并将其编制成各种简单实用、精度高、能实时运行的控制算法,并直接应用于实际控制系统。仿人智能控制理论认为,智能控制为对控制问题求解的二次映射的信息处理过程,即从“认知”到“判断”的定性推理过程和从“判断”到“操作”的定量控制过程。

类似与Saridis的三元机构,仿人智能控制提出了由任务自适应级(TA)、参数自校正级(ST)和运行控制级(MC)组成的2阶产生式系统结构,作为仿人智能控制体系中最基本的单元控制器(UC),如图2所示。

仿人智能控制系统(如图3)的单元控制级UC具有二阶产生式系统结构,能够独立地面向实际被控制的对象,自组织、自适应和自校正地完成实时控制任务。作为一高阶产生式系统的各级,MC、ST和TA三级都有各自的规则库RB、各自的特征辨识器Cl和推理机IE,三级之间蕴含的信息交换通过对公共数据库CDB直接存取数据来完成。这种紧藕合的并行运行机制,便于单元控制器快速自适应过程的完成。对于某一个单一的被控对象,一个单元控制器已足以自主地完成控制问题的求解。同时,其中各级产生式系统还可通过特征记忆,实现学习功能,不断提高控制品质。

此外,仿人智能控制理论提出了智能控制的分层信息处理与决策机构,是求解控制问题的一种高阶产生式系统结构.按层次高低可分为,中枢司令级(CC)、组织协调级((X二)和单元控制级UC。

总之,仿人智能控制系统在结构和功能上具有以下基本特征:分层递阶的信息处理和决策机构(高阶产生式系统结构)、在线的特征辨识和特征记忆、开闭环控制结合和定性决策与定量控制、结合的多模态控制、启发式和直觉推理逻辑的应用。

二、仿人智能控制理论和电力系统自动化

(一)仿人控制理论在电力系统自动化中的应用

1995年,汪涛基和吕林等人把仿人智能控制理论中的部分理论和成果运用到了同步发电机组励磁控制器中。由于励磁控制过程可以理解为一个单输人单输出的单一被控对象,一个单元控制器已足以自主地完成控制问题的求解,汪涛基和吕林等人只使用了单元控制级中的ST和MC两层。采用同步发电机组的Pe、、I、UG及其导数作为特征量,制定9条推理规则,即达到了比常规控制以及PSS控制方式更为优越的控制效果。1996年6月,依据仿人智能控制理论设计的励磁控制器在云南省大寨电厂1#机组上正式投人运行,设备运行情况良好,性能稳定。但目前还没有明确给出其设计的理论来源。对HSIC理论的应用在于对基本理论的应用。因此将HSIC理论全面地引人电力系统运行与控制中来,有利于集思广义,促进电力系统自动化的进一步发展。

(二)电力自动化系统结构

电力系统自动化通常指对电力设备及系统的自动监视、控制和调度。按电力系统运行管理区域,可以将电力系统自动化分成电力系统调度白动化、发电厂自动化和变电站自动化。调度自动化系统的基本构成如图4所示。其中主站(MS)安装在调度所,远动终端(RTU)安装在各发电厂和变电站。MS和RTU之间通过远动通道相互通信实现数据采集和监视与控制。主计算机是主站的核心,负责信息加工和处理,检测一些参数是否越限,断路器是否有变位等,将结果通过人机联系设备向调度员报告,或向上级调度中心转发等。电力系统调度自动化系统构成的一个重要特点是其分层结构。电力系统调度控制一般分为主调度中心、区域调度中心和地区调度中心三级。电力系统调度自动化的结构,与分层递阶的高阶产生式智能控制系统非常一致。

电力自动化系统运作过程中,符合Sar-idis的“精度随智能降低而提高”的原理。主调度中心只分配大的电网运行指标,低层的单元控制器只负责根据上级的指令,具体地实施对本单元内设备的控制。层次越低,则控制系统的被控量、控制量和参考值等指标越具体。

三、结束语

自动控制理论在电力系统的控制与运用中的应用有利于促进电力系统的自动化、智能化水平的提升,在今后的电力系统自动化发展过程中,广大科研人员还应加强对分层递阶控制理论等先进的控制理论的理解和应用,并将其利用与仿人智能控制理论的研究和发展中,以加快电力系统自动化的发展,提高供电的安全性和可靠性。

参考文献

[1]周建平,林韩,温步瀛等.基于层次分析法与灰关联理论的输电网规划方案综合决策[J].电网与清洁能源,2023,27(9):66-70.

[2]杨星.电力系统自动化的实现及其发展[J].科技致富向导,2023(24):42.

[3]智静.电力系统自动化与智能技术分析[J].机电信息,2023(30):39-39,41.

自动控制理论论文范文第4篇

关键词:相似论;自动控制理论;课堂教学;应用

中图分类号:TP13-4 文献标识码:A 文章编号:1674-7712 (2023) 14-0000-01

相似论,即自然界和工程中各相似现象相似原理的学说,主要是研究自然现象中个性与共性以及特殊与一般关系的研究,同时还是研究内部矛盾与外部条件之间的关系的理论。由于事物之间是相互联系的,相似的现象不仅存在于自然界、社会科学,而且还存在于人们的思维活动中,在特别是在“自动控制论”课堂教学中,能够促进学生更好地学习。“自动控制论”主要服务于信息类专业的学生,主要存在三大特点:一是概念抽象,二是计算方法复杂;三是知识含量大。在实际的学习中,基于“相似论”下的“自动控制论”课堂教学,能够提高教学效率。

一、“自动控制理论”数学模型之间的相似关系

模型,即将抽象的实际问题转化成数学问题,主要便于理解和计算某些观念性很强的难点知识。在课程的学习中,由于分析方法非常繁杂,因而很多学生在实际的学习中往往不能够理解以及掌握,常见的分析方法主要有三种:一是时域分析法,即通过直接求解系统在典型输入信号作用下的时域响应来分析系统性能的,在方法上主要按照公式从而求上升时间,一般需要复杂的高阶微分方程运算;二是频域分析法,主要根据系统的频率特性,从而研究系统的动态特性以及稳态特性,不需要复杂的运算,主要的方法是奈氏稳定判据;三是根轨迹分析法,在这种方法中,特征根与系统参数的数值关系主要通过用图解来表示,适用于高阶系统,运算不繁杂。在实际学习的过程中,时域分析法具有直观以及准确的优点,使得学生更偏向于时域分析法。但是在实际的发展中,频域分析法更具有实践意义,有利于解决在工程中出现的实际问题。在教学过程中,通过研究发现了一种有利于学生学习的相似关系,这种相似关系的确立可以帮助学生理解不同区域的数学模型,从而建立系统的精准模型,便于学生掌握全局,具体的关系详见图一。

二、“自动控制理论”与课程内容相似

在课程教学的内容体系建设中,主要以“相似论”为指导,从而创建模块化式结构,从而能够从整体上把握每个教学环节,使每个教学内容都能够有机结合起来,从而提高教学效率,实现教学目标。例如学生在学习正弦交流电路的相关知识时,通过向量法从而分析电路的稳态以及动态。在整体系统的教学过程中,主要的教学模式可以分为四个步骤:一是课堂教学演示,通过运用向量法,进行稳态响应以及动态响应的分析;二是课堂讨论,要充分发挥学生的主体作用,通过分析正弦交流电路的稳态以及动态,从而思考频率、幅值以及相位差的变化;三是课堂学习,在讨论的基础上,从而加深对频率特性的理解以及掌握;四是模拟实验,通过将理论知识运用到实际的试验中,从而加强学生的学习。

三、“相似论”在“自动控制理论”课程教学中的运用效果

随着现代科学技术的不断发展,计算机技术、微电子技术、网络技术应用的领域越来越广泛,因此自动控制理论的内容也越来越丰富。在课程教学的不断改革的大背景下,“自动化控制理论”在整个教学过程中起着重大的作用。由于现代教学的内容越来越偏重实践,主要强调提高解决实际工程问题的能力,所以在实际的教学过程中,主要通过模拟相关的实验,从而帮助学生更好地理解以及掌握知识,从而提高学生分析问题以及解决问题的能力。在将相似论运用于“自动控制理论”课堂教学中,能够培养学生对实验的浓厚兴趣,提高学生学习的主观能动性。同时,学生在相关模拟实验的学习中,通过参与实验设计方案、实验步骤以及实验现象分析和实验结果谈论这一整个教学过程,加深了学生对于整个知识框架的了解以及把握,能够扩散学生的思维,有利于提高学生的动手能力以及分析问题并解决问题的能力。

四、结束语

综上所述,随着我国教育事业的不断发展,将“相似论”在“自动控制理论”课程教学中充分运用起来,能够营造良好的学习氛围,提高学生的学习能力以及教学效率,从而能够满足现代市场上对于人才的要求,促进学生更好地就业。

参考文献:

[1]耿玉茹.“相似论”在“自动控制理论”课程教学中的运用[J].成都电子机械高等专科学校学报,2023(03).

[2]吴涛.自动控制理论课程教学探析[J].赤峰学院学报:自然科学版,2023(04).

自动控制理论论文范文第5篇

[关键词]自动控制理论;Matlab;模糊控制;鲁棒控制;最优化控制

中图分类号:TP13-4 文献标识码:A 文章编号:1009-914X(2023)01-0310-01

随着控制系统复杂性的增加,不确定因素的增多,要求各控制理论分支有进一步的发展,弥补各理论分支的缺点与不足,以满足更高的控制性能指标。现有的控制理论在线性系统控制中大都能取得良好的控制效果,但对离散、非线性复杂系统领域的研究大都刚刚起步,或处于初级阶段,远未达到人们的期望。而实际工业生产过程的模型一般都很复杂,通常具有非线性、分布参数和时变等特性。因此将控制理论的研究领域推广到非线性复杂系统有重要的实际意义。另外与宏观复杂系统控制相对的量子控制(Quantum Control)也正在作为一个全新的学科领域蓬勃崛起,它的发展也依赖于完善的控制理论和优化控制策略。近年来随着微电子、半导体、计算机等技术的快速发展也强有力的推动了自动控制理论的发展。

一、现代控制理论的产生及其发展

控制理论作为一门科学,它的产生可追溯到18 世纪中叶的第一次技术革命,1765年瓦特发明了蒸汽机,应用离心式飞锤调速器原理控制蒸汽机,标志着人类以蒸汽为动力的机械化时代的开始,后来工程界用控制理论分别从时域和频域角度讨论调速系统的稳定性题,1872年劳斯(Routh E J)和1890年赫尔维茨(Hurwitz)先后找到了系统稳定性的代数据,1932年奈奎斯特(Nyquist H)发表了放大器稳定性的著名论文,给出了系统稳定性的奈奎斯特判据。美国著名的控制论创始人维纳(Wiener N)总结了前人的成果,认为客观世界存在3大要素:物质、能量、信息,虽然在物质构造和能量转换方面,动物和机器有显著的不同,但在信息传递、变换、处理方面有惊人的相似之处,1948 年发表了《控制论―或关于在动物和机器中控制和通讯的科学》,书中论述了控制理论的一般方法,推广了反馈的概念,确立了控制理论这门学科的产生。

1.经典控制理论。第一代称为“经典控制理论”时期,时间为20 世纪40~50 年代。它研究的主要对象多为线性定常系统,主要研究单输入单输出问题,研究方法主要采用以传递函数、频率特性、根轨迹为基础的频域分析法,它的控制思想首先旨在对机器进行“调节”,使之能够稳定运行,其次是采用“反馈的方式,使得一个动力学系统能够按照人们的要求精确地工作,最终实现对系统按指定目标进行控制。”

2.现代控制理论。第二代称为“现代控制理论”时期,时间为20 世纪60~70 年代。经典控制理论对线性定常系统可产生良好的控制效果,但是它对多输入多输出、时变、非线性系统的控制却力不从心。所以50 年代末60 年代初,学者卡尔曼等人将古典力学中的状态、状态空间概念加以发展与推广,将经典控制理论中的高阶常微分方程转化为一阶微分方程组,用以描述多变量控制系统,并深刻揭示了用状态空间描述的系统内部结构特性如可控性、可观性,从而奠定了现代控制理论的基础。

3.第三代控制理论。以上所提的经典控制理论和现代控制理论都是建立在数学模型之上的,所以统称为常规(传统)控制。它们为了控制必须建模,但许多实际系统的高维性及系统信息的模糊性、不确定性、偶然性和不完全性给基于数学模型的传统控制理论以巨大的挑战。是否可以改变一下思路,不完全以控制对象为研究主体,而以控制器为研究对象;是否可以用人工智能的逻辑推理、启发式知识、专家系统解决难于建立数学模型的问题呢?智能控制的出现正源于这一思想。1967年Leondes 和Mendel 首次正式使用“智能控制”一词,1971 年傅京孙教授指出,为了解决控制问题,用严格的数学方法研究新的工具来对复杂的“环境2对象”模型进行建模和识别以实现最优控制,或者用人工智能的思想建立对不能精确定义的环境和任务的控制设计方法,这两者都值得试一试,而重要的是把两种途径密切结合起来协调的进行研究。沿着这一思想出发,现代控制理论将微分几何、微分代数、数学分析与逻辑推理、启发式知识建立和发展了智能控制理论相结合从而形成第三代控制理论大系统理论和智能控制理论。

二、Matlab工程软件

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除