数学《完全平方公式》教案(通用13篇)
数学《完全平方公式》教案(通用13篇)
在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。教案要怎么写呢?下面是小编帮大家整理的数学《完全平方公式》教案,欢迎阅读与收藏。
数学《完全平方公式》教案 篇1
教学目标
1、使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2、理解完全平方式的意义和特点,培养学生的判断能力。
3、进一步培养学生全面地观察问题、分析问题和逆向思维的能力。
4、通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。
教学重点和难点
重点:运用完全平方式分解因式。
难点:灵活运用完全平方公式公解因式。
教学过程设计
一、复习
1、问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。
2、把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4。
解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n)。
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式。
请写出完全平方公式。
完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。
这节课我们就来讨论如何运用完全平方公式把多项式因式分解。
二、新课
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1。
答:(1)式是完全平方式。因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) 。
(2)不是完全平方式。因为第三部分必须是2xy。
(3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) 。
(4)不是完全平方式。因为缺第三部分。
请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y。
例1 把25x4+10x2+1分解因式。
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。
解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。
例2 把1- m+ 分解因式。
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。
解法1 1- m+ =1-2·1· +( )2=(1- )2。
解法2 先提出 ,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2。
三、课堂练习(投影)
1、填空:
(1)x2-10x+( )2=( )2;
(2)9x2+( )+4y2=( )2;
(3)1-( )+m2/9=( )2。
2、下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式。
(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4。
3、把下列各式分解因式:
(1)a2-24a+144; (2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2。
答案:
1、(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。
2、(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。
(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。
(3)是完全平方式,a2-4ab+4b2=(a-2b)2。
(4)是完全平方式,9m2+12m+4=(3m+2) 2。
(5)是完全平方式,1-a+a2/4=(1-a2)2。
3、(1)(a-12) 2; (2)(2ab+1) 2;
(3)(13x+3y) 2; (4)(12a-b)2。
四、小结
运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1、首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。
2、在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。
五、作业
把下列各式分解因式:
1、(1)a2+8a+16; (2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4。
2、(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。
3、(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4、(1) x -4x; (2)a5+a4+ a3。
答案:
1、(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)(y+12)2。
2、(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2; (4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2。
3、(1)(mn-1) 2; (2)7am-1(a-1) 2。
4、(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。
课堂教学设计说明
1、利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
2、本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法。在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。
数学《完全平方公式》教案 篇2
教学目标
1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.
2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.
3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.
教学重难点
教学重点:
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:、、、;
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,S=;
②部分看:四块面积的和,S=.
总结:通过以上探索你发现了什么?
问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?
问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.
总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.
问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?
语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置
数学《完全平方公式》教案 篇3
一、学习目标
会运用完全平方公式进行一些数的简便运算
二、学习重点
运用完全平方公式进行一些数的简便运算
三、学习难点
灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计 (一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2) (3)(4)
2.计算:
(1) (2)
(二)学习过程
平方差公式和完全平方公式的逆运用
由 反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1. 2.
现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,
它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则S= =
即:
如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的'面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.
例2.计算:
(1) (2)
变式训练:
(1) (2)
(3) (4)(x+5)2–(x-2)(x-3)
(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)
拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
A.负数B.零C.正数D.不小于2
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值
回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。
数学《完全平方公式》教案 篇4
课题教案:
完全平方公式
学科:
数学
年级:
七年级
1内容本节课的主题:
通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
1.1以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
1.2用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。
2教学目标
2.1知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解(a+b)2=a2+2ab+b2的几何背景。
2.2技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。
2.3情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
3教学重点
完全平方公式的准确应用。
4教学难点
掌握公式中字母表达式的意义及灵活运用公式进行计算。
5教育理念和教学方式
5.1教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自我调适,自我选择。
学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
5.2采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。
6具体教学过程设计如下:
6.1提出问题:[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?
(x+3)2=,(x-3)2=,
这些式子的左边和右边有什么规律?再做几个试一试:
(2m+3n)2=,(2m-3n)2=
6.2分析问题
6.2.1[学生回答]分组交流、讨论 多项式的结构特点
(1)原式的特点。两数和的平方。
(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
6.2.2[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
6.2.3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
6.3运用公式,解决问题
6.3.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=, (m-n)2=,
(-m+n)2=, (-m-n)2=,
6.3.2小试牛刀
①(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
6.4学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
6.5[作业]P34随堂练习P36习题
数学《完全平方公式》教案 篇5
重点、难点根据公式的特征及问题的特征选择适当的公式计算.
教学过程 一、议一议
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.
二、做一做
例1. 利用完全平方式计算1. 102 。
2. 197 师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述
教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.计算:1.(x-3) -x
2.(2a+b- )(2a-b+ )师生共同分析:1中(x-3) 可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、试一试
计算:
1. (a+b+c)
2. (a+b) 师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述。
教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
P38 1
五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点. 1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab) = a b 的错误,或(ab) = a ab+b (漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
六、作业
课本习题1.14 P38 1、2、3.
七、教后反思
1.9 整式的除法第一课时 单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.
2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.
数学《完全平方公式》教案 篇6
教学过程 一、议一议
探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即( )x = x y,由单项式乘以单项式法则可得(x y)x = x y,因此,x yx =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果. 教师板书: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
二、做一做
巩固新知例1计算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体 (一个字母)相除,后用完全平方公式计算.教师板书如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b
三、随堂练习
P40 1学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.
四、小结
本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:
1.系数相除与同底数幂相除的区别;
2.符号问题;
3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业课本习题1.15.P41 1、2. 3
数学《完全平方公式》教案 篇7
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2。
数学《完全平方公式》教案 篇8
教学目标:
1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3、了解完全平方公式的几何背景,培养学生的数形结合意识。
4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
教学重点:
1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;
2、会用完全平方公式进行运算。
教学难点:
会用完全平方公式进行运算
教学方法:
探索讨论、归纳总结。
教学过程:
一、回顾与思考
活动内容:复习已学过的平方差公式
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
二、情境引入
活动内容:提出问题:
一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
三、初识完全平方公式
活动内容:
1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引导学生利用几何图形来验证两数差的完全平方公式。
3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
四、再识完全平方公式
活动内容:例1用完全平方公式计算:
(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2
2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
五、巩固练习:
1、下列各式中哪些可以运用完全平方公式计算。
1、6完全平方公式:
一、学习目标
1、会推导完全平方公式,并能运用公式进行简单的计算。
2、了解完全平方公式的几何背景
二、学习重点:会用完全平方公式进行运算。
三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。
四、学习设计
(一)预习准备
(1)预习书p23—26
(2)思考:和的平方等于平方的和吗?
1、6《完全平方公式》习题
1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。
《1、6完全平方公式》课时练习
1、(5—x2)2等于;
答案:25—10x2+x4
解析:解答:(5—x2)2=25—10x2+x4
分析:根据完全平方公式与幂的乘方法则可完成此题。
2、(x—2y)2等于;
答案:x2—8xy+4y2
解析:解答:(x—2y)2=x2—8xy+4y2
分析:根据完全平方公式与积的乘方法则可完成此题。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2
解析:解答:(3a—4b)2=9a2—24ab+16b2
分析:根据完全平方公式可完成此题。
数学《完全平方公式》教案 篇9
总体说明:
完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维_就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
数学《完全平方公式》教案 篇10
学习目标:
1、会推导完全平方公式,并能用几何图形解释公式;
2、利用公式进行熟练地计算;
3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。
学习过程:
(一)自主探索
1、计算:(1)(a+b)2 (2)(a-b)2
2、你能用文字叙述以上的结论吗?
(二)合作交流:
你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。
(三)试一试,我能行。
1、利用完全平方公式计算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[来源:中.考.资.源.网]
(四)巩固练习
利用完全平方公式计算:
A组:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B组:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C组:
(1)1012 (2)542 (3)9972
(五)小结与反思
我的收获:
我的疑惑:
(六)达标检测
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、计算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
数学《完全平方公式》教案 篇11
1.能根据多项式的乘法推导出完全平方公式;(重点)
2.理解并掌握完全平方公式,并能进行计算.(重点、难点)
一、情境导入
计算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述计算,你发现了什么结论?
二、合作探究
探究点:完全平方公式
直接运用完全平方公式进行计算
利用完全平方公式计算:
(1)(5-a)2;
(2)(-3-4n)2;
(3)(-3a+b)2.
解析:直接运用完全平方公式进行计算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3-4n)2=92+24n+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.
变式训练:见《学练优》本课时练习“课堂达标训练”第12题
构造完全平方式
如果36x2+(+1)x+252是一个完全平方式,求的值.
解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.
解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.
方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
运用完全平方公式进行简便计算
利用完全平方公式计算:
(1)992; (2)1022.
解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.
解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;
(2)1022=(100+2)2=1002+2×100×2+4=10404.
方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.
变式训练:见《学练优》本课时练习“课堂达标训练”第13题
灵活运用完全平方公式求代数式的值
若(x+)2=9,且(x-)2=1.
(1)求1x2+12的值;
(2)求(x2+1)(2+1)的值.
解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.
解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;
(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.
方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
完全平方公式的几何背景
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )
A.a2-b2=(a+b)(a-b)
B.(a-b)(a+2b)=a2+ab-2b2
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.
方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
与完全平方公式有关的探究问题
下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.
方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第10题
三、板书设计 1.完全平方公式
两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
2.完全平方公式的运用
本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
数学《完全平方公式》教案 篇12
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体:多媒体六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答]分组交流、讨论
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判断:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小试牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结]通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业]P34随堂练习P36习题
数学《完全平方公式》教案 篇13
一、教学目标
(1) 知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2) 过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点;
公式结构及运用。
三、教学难点;
公式中字母AB的含义理解与公式正确运用。
四、教具;
自制长方形、正方形卡片
五、教学过程; 教师活动 学生活动
1、 创设情景,提出问题,引入课题
(1) 想一想
1.一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1) 第一天,a个男孩去看老人,老人共给他们几块糖?
(2) 第二天,个女孩子去看望老人,老人共给他们多少块糖?
(3) 第三天,( )个孩子一起去看望老人,老人共给他们多少块糖?
(4) 第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)
2、 学生四人一组讨论。
填空:
(1)第一天给孩子 块糖。
(2)第二天给孩子 块糖。
(3)第三天给孩子 块糖。
男孩子第三天多得 块糖
女孩第三天多得 块糖。
(2) 做一做、请同学拼图
a教师巡视指导学生拼图
1、 教师提问:
(1)、大正方形边长?
(2)每一块卡片的面积是多少?
(3)用不同形式表示正方形总面积,比较发现什么?
2、 想一想
(1)(a +b )用多项式乘法法则说明
(2)( a -b )
3、请同学们自己叙述上面的等式
4、说一说,a b能表示什么?
(□+○) □+2□○+○
5、算一算
(1)(2X-3)(2)(4X+5Y)
请同学们分清a b
6、练一练
(1)(2X-3Y) (2)(2XY-3X)
7、试一试(a+b+c)
作业:
P135 1、2
学生2人一组拼图交流
2、学生观察思考
(1) 大正方形边长?
(2) 四块卡片的面积分别是
(3) 大正方形的总面积是多少?
3、
(1)学生运用多项式乘法法则推导
(a+b)=a+2ab+b说出每一步运算理由
(2)学生自己探究交流
4、学生用语言叙述公式
5、师生共同a、b对应项 教师书写
6、学生独立完成练一练展示结果
7、学生四人一组讨论交流
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除