数学数与代数知识点整理

数学数与代数知识点整理1

  认识计数单位“百”和“

  千”,知道相邻两个计数单位之间的十进关系。

  掌握万以内的数位顺序,会读、写万以内的数。

  知道万以内数的组成。

  会比较万以内数的大小,能用符号和词语描述万以内数的大小。

  理解并认识万以内的近似数。

  会口算百以内的两位数加、减两位数。

  会口算整百、整千数加、减法。

  会计算几百几十加、减几百几十,能结合实际进行估算。

  知道除法的.含义和除法各部分名称以及乘法与除法的关系。

  熟练进行用乘法口诀求商。

  会从生活中发现和提出数学问题,能用所学知识(两步计算)加以解决。

  知道小括号的作用,会使用小括号。

  会探索给定图形或数的排列中的简单规律。

  有发现和欣赏数学美、运用数学去创造美的意识。

  初步形成观察、分析和推理能力。

  认识质量单位克和千克。

  初步建立1克和1千克的质量观念,知道1千克=1000克。

  建立质量观念,培养学生估算物体质量的意识。


数学数与代数知识点整理扩展阅读


数学数与代数知识点整理(扩展1)

——初中数学:数与代数的知识点3篇

初中数学:数与代数的知识点1

  1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数

  数轴:①画一条水*直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的.绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数 无理数:无限不循环小数叫无理数

  *方根:①如果一个正数x的*方等于a,那么这个正数x就叫做a的算术*方根。②如果一个数x的*方等于a,那么这个数x就叫做a的*方根。③一个正数有2个*方根/0的*方根为0/负数没有*方根。④求一个数a的*方根运算,叫做开*方,其中a叫做被开方数。

  立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一样。

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:*方差公式/完全*方公式

  整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。


数学数与代数知识点整理(扩展2)

——四年级下册数学数与代数知识点整理3篇

四年级下册数学数与代数知识点整理1

  一、小数的认识和加减法:

  1、小数的意义

  2、测量活动(名数的改写)

  3、比大小(比较小数的大小)

  4、购物小票(小数加减法——不进位加、不退位减)

  5、量体重(小数加减法——进位加、退位减)

  6、歌手大赛(小数加、减法的混合运算及简算)

  二、小数乘法:

  1、文具店(小数乘整数)

  2、小数点搬家(小数点位置移动引起小数大***规律)

  3、街心公园(两个乘数小数位数与积的小数位数的关系)

  4、包装(小数乘法的竖式计算)

  5、爬行最慢的哺乳动物(小数乘法的竖式计算及小数估算)

四年级下册数学数与代数知识点整理2

  (一)数的认识

  整数【正数、0、负数】

  一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。

  二、最小的一位数是1,最小的自然数是0。

  三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。

  四、像 +4、19、+8844这样的.数都是正数。像-4、-11、-7、-155这样的数都是负数。

  五、0既不是正数,也不是负数。正数都大于0,负数都小于0。

  六、通常情况下,比海*面高用正数表示,比海*面低用负数表示。

  七、通常情况下,盈利用正数表示,亏损用负数表示。

  八、通常情况下,上车人数用正数表示,下车人数用负数表示。

  九、通常情况下,收入用正数表示,支出用负数表示。

  十、通常情况下,上升用正数表示,下降用负数表示。

  小数【有限小数、无限小数】

  一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

  三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

  四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

  七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

  八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

  九、整数和小数的数位顺序表:

  分数【真分数、假分数】

  一、把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

  二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)

  三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。

  四、分数可以分为真分数和假分数。

  五、分子小于分母的分数叫做真分数。真分数小于1。

  六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

  七、分子和分母只有公因数1的分数叫做最简分数。

  八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

  九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。

  百分数【税率、利息、折扣、成数】

  一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。

  二、分数与百分数比较:

  不同点

  相同点

  分 数

  可以表示具体数量,可以有单位名称

  表示两个数之间的关系

  百分数

  不可以表示具体数量,不可以有单位名称

  三、分数、小数、百分数的互化。

  (1)把分数化成小数,用分数的分子除以分母。

  (2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

  (3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

  (4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

  (5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

  (6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  四、熟记常用三数的互化。

  五、

  1、出勤率表示出勤人数占***的百分之几。

  2、合格率表示合格件数占总件数的百分之几。

  3、成活率表示成活棵数占总棵数的百分之几。

  六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

  七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几

  八、应得利息是税前利息,实得利息是税后利息。

  九、利息 = 本金 × 利率 × 时间

  十、应得利息 -利息税 = 实得利息

  十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

  十二、

  1、原价×折扣=现价

  2、现价÷原价=折扣

  3、现价÷折扣=原价

  十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。


数学数与代数知识点整理(扩展3)

——1年级数学数与代数知识点

1年级数学数与代数知识点1

  1、第一单元《生活中的数》。基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0——10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学**惯。

  2、第二单元《比较》。通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。

  3、第三单元《加减法〈一〉》。经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。

  4、第七单元《加减法〈二〉》。经历表示11——20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。

  5、第八单元《认识钟表》。结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用“快几时了”或“刚过几时”等词语描述时间,经历简单而熟悉的操作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。


数学数与代数知识点整理(扩展4)

——小学数学知识点整理3篇

小学数学知识点整理1

  一 图形的变换

  轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形, 这条直线叫做对称轴。(正方形,长方形,三角形,*行四边形,圆)

  旋转:在*面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  旋转的性质:图形的旋转是图形上的每一点在*面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

  知识点连接:*移、轴对称、旋转的区别联系

  二 因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。

  大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  找因数的方法:

  一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  一个数的倍数的个数是无限的,最小的倍数是它本身。

  因数与倍数是相对存在,不能脱离**:2是4的因数,4是2的倍数

  因数与倍数指的通常是整数,不能针对小数。2.4×5=12,所以5是12的因数(×)

  2、自然数按能不能被2整除来分:奇数 偶数

  奇数:不能被2整除的数

  偶数:能被2整除的数。

  最小的奇数是1,最小的偶数是0.

  个位上是0,2,4,6,8的数都是2的倍数。

  个位上是0或5的数,是5的倍数。

  一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

  3、自然数按因数的个数来分:质数、合数、1.

  质数:有且只有两个因数,1和它本身

  合数:至少有三个因数,1、它本身、别的因数

  1: 只有1个因数。“1”既不是质数,也不是合数。

  最小的质数是2,最小的合数是4。

  20以内的质数:有8个(2、3、5、7、11、13、17、19)

  4、分解质因数

  用短除法分解质因数 (一个合数写成几个质数相乘的形式)

  5、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

  几个数的公因数只有1,就说这几个数互质。

  两数互质的特殊情况:

  ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

  ⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

  如果两数互质时,那么1就是它们的最大公因数。

  0、1、2、3、4

  6、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

  用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

  如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

  如果两数互质时,那么它们的积就是它们的最小公倍数。

  1. 跑圈问题

  2. 公交问题

  3.最大公因数

  三 长方体和正方体

  【概念】

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

  2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

  4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  5、长方体有6个面,8个顶点,112条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

  长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4

  长=棱长总和÷4-宽 -高 a=L÷4-b-h

  宽=棱长总和÷4-长 -高 b=L÷4-a-h

  高=棱长总和÷4-长 -宽 h=L÷4-a-b

  正方体的棱长总和=棱长×12 L=a×12

  正方体的棱长=棱长总和÷12 a=L÷12

  6、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

  无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)

  正方体的表面积=棱长×棱长×6 S=a×a×6

  6、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高 V=abh

  长=体积÷宽÷高 a=V÷b÷h

  宽=体积÷长÷高 b=V÷a÷h

  高=体积÷长÷宽 h= V÷a÷b

  正方体的体积=棱长×棱长×棱长 V=a×a×a

  7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米 1毫升=1立方厘米 1升=1000毫升

  8、a3读作“a的立方”表示3个a相乘,(即a·a·a)

小学数学知识点整理2

  一、长度单位和角的知识点 [会按要求画线段和角。]

  1、尺子是测量物体长度的工具,常用的长度单位有:米和厘米。食指的宽度约有1厘米,伸开双臂大约1米。1米=100厘米 100厘米=1米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度时:把尺的“0”刻度对准物体的左端,再看右端对着刻度几,就是几厘米。物体长度=较大数-较小数,例如:从刻度“0”到刻度“6”之间是6厘米(6-0=6),从刻度“6”到刻度“9”之间是3厘米(9-6=3);还可以用数一数的方法数出物体的长度。(算,数)

  4、线段是直的,可以量出长度。

  5、画线段的方法:从尺子的“0”刻度开始画起,长度是几就画到几。(找点画线;有时还要先算出长度再画线。如画一条比6厘米短2厘米的线段。)

  6、角有1个顶点,2条直边。锐角比直角小,钝角比直角大,钝角比锐角大。锐角<直角<钝角(钝角>直角>锐角)。

  7、用三角板可以画出直角,直角要标出直角符号(也叫垂足符号)。

  8、所有的直角都一样大。要知道一个角是不是直角,可以用三角板上的直角比一比。长方形和正方形都有4个角,4个都是直角。

  9、角的大小与两条边的长短无关,与两条边**的大小有关。

  10、每一个三角板上都有3个角,***1个是直角,另外2个是锐角。

  11、角的画法:从一个点起,用尺子向不同的方向画两条笔直的线,就画成一个角。(从一点引出两条射线所组成的图形叫作角。)

  练习:

  1、1米21厘米=( )厘米 53厘米-18厘米=( )厘米;一棵大树高10()。

  2、我的身高是( )米( )厘米。

  3、一个角有( )个顶点和( )条边;一本书宽15()。

  4、三角板中有三个角,有()个直角。

  5、角的两条边越长,角就越大。( )

  二、100以内的笔算加法和减法知识点:

  1、用竖式计算两位数加法时:要把相同数位对齐。从个位加起。如果个位满10,向十位进1。

  2、用竖式计算两位数减法时:要把相同数位对齐。从个位减起。如果个位不够减,从十位退1和个位组成两位数再减,计算十位时要记得减去退掉的1。

  3、加减混合运算,按从左往右的顺序计算,有小括号的,先算小括号里的,用分步式计算。

  4、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?

  5、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)

  三、表内乘法知识点[一定要熟记乘法口诀并能熟练运用。]

  1、求几个相同加数的和,用乘法表示更加简便。求几个相同加数的和的简便运算叫做乘法。

  2、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。) 加法写成乘法时,加法的和与乘法的积相同。

  3、2×7=14 读作:2乘7等于14;3乘4等于12写作:3×4=12。

  4、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

  5、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。先算相同再加不同。 乘减:先把每一份数都当作相同的数来算,写成乘法,再把多算进去的数减去。如:加法:5+5+5+5+3=23 乘加:5×4+3=23 乘减:5×5-3=23

  6、“求几个几相加的和是多少”和“求一个数的几倍是多少”用乘法计算,如:7的3倍是多少?(7×3=21),5个8相加的和是多少?(8×5=40)

  练习:

  1、5个6相加写作乘法算式是()或( )。

  2、先看图,再填空

  (1)求一共有多少个的加法算式是: ;

  (2)求一共有多少个的乘法算式是: ;

  (3)第二行画是4个3:

  第一行:第二行:

  (5)在8×6=48中,8和6都叫做( ),48叫做( )。

  (6)先把乘法口诀填完整,再写出两个相应的乘法算式。

  (1)( )八*** (乘法口诀要大写)

  (2)七( )六十三 (乘法算式要小写)

  3、根据算式写出乘法口诀。8×7() 6×9( )

  4、5+5+5+4=( )或( ) 8+8+8+8-7=( )或( )

  四、观察物体知识点[从正面、侧面、上面看。]

  1、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。

  2、看到的立体图形的一个面是正方形,这个立体图形可能是正方体,还可能是长方体。

  3、看到的立体图形的一个面圆形,这个立体图形可能是球,还可能是圆柱,圆锥。

  4、面对面看到的物体形状一样,但方向相反。

  5、观察组合物体的表面时,与物体的高矮和是否对齐无关。

  6、练习

  (1)在不同的位置观察同一个物体,看到的形状一定不同。(×)(球)

  (2)在同一位置观察同一个物体,最多只能看到3个面。(√)

  (3)从正面看一个正方体,看到一个长方形。(×)

  (4)小明从一个物体的上面看到一个正方形,那么这个物体一定是正方形。(×)

  (5)从一个长方体的任何一面观察,都不可能看到正方形。(×)

  (6)从不同的位置看同一个物体,看到的形状(不一定)相同。

  (7)从正面看一个正方体,只能看到一个(正方)形。

  (8)从一个物体的上面看到一个正方形,它是一个(长方体或正方体)。

  (9)从一个长方体的任何一个面看,不可能看到(圆)。

  五、认识时间知识点

  1、1时=(60)分

  2、钟面上游(12)个数,这些数把钟面分成了(12)个相等的大格,每个大格又分成了(5)个相等的小格,钟面上一共有(60)个小格。

  3、钟面上有(2)根针,短粗一点的针叫(时)针,细长一点的针叫(分)针。分针走1小格是(1)分,走1大格是(5)分,时针走1大格是(1)时。分针从12走到6,走了(30)分;时针从12走到6,走了(6)小时;时针从12开始绕了一圈,又走回了12,走了(12)时。

  4、(30)分也可以说成半小时,(15)分也可以说成一刻钟。如8时30分是8时半,9时15分是9时一刻。

  5、(3或9)时整,钟面上时针和分针成直角。

  6、写出钟面上的时间,画分针:教材P101第3题,P105第12题。

  六、数学广角知识点

  1、在排列和组合中,要按一定的顺序进行,才不会选重或选漏。排列与顺序有关,如数字的组成,衣裤、早餐搭配,排队等;组合与顺序无关,如给数字求和,握手,调果汁等。

  2、3个人中,每两个人进行一次比赛或握手、照相等,共要进行3次。

  3、用3个不是0的数,能组成6个十位与个位不相同的两位数,如4、5、7能组成45、47、54、57、74、75;如果有一个是0,能组成4个两位数。如:0、4、7能组成40、47、70、74。

  七、解决问题:

  1、海洋馆里有13条黄金神仙鱼,花面神仙鱼比黄金神仙鱼多9条,透红小丑鱼比黄金神仙鱼少8条。

  (1)花面神仙鱼有多少条?两种神仙鱼共有多少条?

  (2)你还能提出其他数学问题并解答吗?

  2、故事书每本4元,连环画每本7元,科学世界每本8元。

  (1)买6本故事书和1本科技书一共要多少钱?

  (2)买5本连环画和1本科技书,50元钱够吗?

  (3)你还能提出其他数学问题并解答吗?

  3、一辆公交车上原来62人,到站后下了25人,**19人,现在车上还有多少人?

小学数学知识点整理3

  第一单元 方程

  1、表示相等关系的式子叫做等式。

  2、含有未知数的等式是方程。

  3、方程一定是等式;等式不一定是方程。等式方程

  4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

  5、求方程中未知数的过程,叫做解方程。

  解方程时常用的关系式:

  一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差

  一个因数=积另一个因数 除数=被除数商 被除数=商除数

  注意:解完方程,要养成检验的好习惯。

  6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

  7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)

  8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。

  第二单元 确定位置

  1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。

  2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

  3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示经度和纬度,经度和纬度都用度()、分()、秒()表示。

  4、将某个点向左右*移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右*移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左*移2个单位后的位置是(4,3),列6-2=4。

  5、将某个点向上下*移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上*移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下*移2个单位后的位置是(6,1),列3-2=1。

  第三单元 公倍数和公因数

  1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

  一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

  一个数最大的因数等于这个数最小的倍数。

  2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。

  3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。

  4、两个素数的积一定是合数。举例:35=15,15是合数。

  5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。

  6、求最大公因数和最小公倍数的方法:

  倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5

  素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1

  一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1

  相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1

  特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。

  一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)

  第四单元 认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位1。把单位1*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,最大的分数单位是2(1)。

  3、举例说明一个分数的意义:7(3)表示把单位1*均分成7份,表示这样的3份.还表示把3*均分成7份,表示这样的1份。7(3)吨表示把1吨*均分成7份,表示这样的3份.还表示把3吨*均分成7份,表示这样的1份。

  4、4米的5(1)和1米的5(4)同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

  被除数除数= 除数(被除数)如果用a表示被除数,b表示除数,可以写成ab=b(a)(b0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作

  1 3(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、一些特殊分数的值:

  2(1) = 0.5 4(1) = 0.25 4(3) =0.75 5(1) =0.2 5(2) =0.4 5(3) =0.6

  5(4) =0.8 8(1) =0.125 8(3) =0.375 8(5) =0.625 8(7) =0.875 10(1) =0.1 16(1) =0.0625

  16(3) =0.1875 16(5) =0.3125 20(1) =0.05 25(1) =0.04 50(1) =0.02 100(1) =0.01

  19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  第五单元 找规律

  1、单向*移求不同的和的个数规律:

  方格的总个数每次框出的个数+1=得到不同和的个数

  2、双向*移

  如果*移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向*移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。

  一共有多少种贴法=沿着长的贴法沿着宽的贴法

  3、中间的数框出的个数=框出的每个数的和

  框出的每个数的和框出的个数=中间的数

  (注意:有些数字的和是不能框出来的,(1)是框出的每个数的和框出的个数中间的数;(2)是虽然框出的每个数的和框出的个数=中间的数,但中间的数在边上;(3)出现有空白方格。)

  第六单元 分数的基本性质

  1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。

  2、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。

  3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

  约分方法:直接除以分子、分母的最大公因数。 例如:

  4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。

  5、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。(2)化成小数后再比较。(3)先通分转化成同分子的分数再比较。(4)十字相乘法。

  球的反弹实验

  球的反弹高度实验的结论:

  (1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

  (2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。

  第七单元 统计

  1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

  2、作复式折线统计图步骤:

  ①写标题和统计时间;

  ②注明图例(实线和虚线表示);

  ③分别描点、标数;

  ④实线和虚线的区分(画线用直尺)。

  注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)

  第八单元 分数加法和减法

  1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。

  2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

  3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

  4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

  5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。

  6、裂项公式(用于特殊的简便计算)

  密铺

  1、由线段围成的图形(三角形、长方形、正方形、梯形、*行四边形)能够密铺

  2、由曲线围成的图形(圆)不能够密铺。

  第九单元 解决问题策略

  1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。倒推时还用到一些反义词呢

  2、要正确解决多次倒推的策略就是对题目先进行整理,通过整理过程来理清思路,再倒推回去或列方程解答。

  3、对于条件出现一半的复杂倒推题目,通常通过画线段图帮助分析列算式来解决。

  第十单元 圆

  1、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

  2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆**意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

  3、用圆规画圆的过程:先两脚**,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

  4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

  5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

  6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。

  7、正方形里最大的圆。两者联系:边长=直径

  画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  8、长方形里最大的圆。两者联系:宽=直径

  画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  9、同一个圆内的所有线段中,圆的直径是最长的。

  10、车轮滚动一周前进的路程就是车轮的周长。

  每分前进米数(速度)=车轮的周长转数

  11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

  用字母(读pi)表示。是一个无限不循环小数。=3.141592653

  我们在计算时,一般保留两位小数,取它的近似值3.14。3.14

  12、如果用C表示圆的周长,那么C=d或C = 2r

  13、求圆的半径或直径的方法:d = C圆 r= C圆 2= C圆2

  14、半圆的周长等于圆周长的一半加一条直径。 C半圆= r+2r C半圆= d2+d

  15、常用的3.14的倍数:

  3.142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

  3.147=21.98 3.148=25.12 3.149=28.26 3.1412=37.68 3.1414=43.96

  3.1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

  3.1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

  16、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

  17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=r)。即:S长方形= a b

  S圆 = r r

  = r2

  S圆 = r2

  注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2r+2r=C圆+d

  18、半圆的面积是圆面积的一半。S半圆=r22

  19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

  面积的倍数=半径的倍数2

  20、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

  21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)

  22、常用的*方数:112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400


数学数与代数知识点整理(扩展5)

——1年级数学数与代数知识点200篇

1年级数学数与代数知识点1

  1、第一单元《生活中的数》。基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0——10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学**惯。

  2、第二单元《比较》。通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。

  3、第三单元《加减法〈一〉》。经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。

  4、第七单元《加减法〈二〉》。经历表示11——20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。

  5、第八单元《认识钟表》。结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用“快几时了”或“刚过几时”等词语描述时间,经历简单而熟悉的操作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。


数学数与代数知识点整理(扩展6)

——中考数学三角形知识点整理3篇

中考数学三角形知识点整理1

  三角形是多边形中边数最少的一种.它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形.

  三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在.另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的.三角形中有三条边,三个角,三个顶点.

中考数学三角形知识点整理2

  三角形中的主要线段有:三角形的角*分线、中线和高线.

  这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握.并且对这三条线段必须明确三点:

  (1)三角形的角*分线、中线、高线均是线段,不是直线,也不是射线.

  (2)三角形的角*分线、中线、高线都有三条,角*分线、中线,都在三角形内部.而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边.

  (3)在画三角形的三条角*分线、中线、高时可发现它们都交于一点.在以后我们可以给出具体证明.今后我们把三角形三条角*分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心.

中考数学三角形知识点整理3

  三角形的`三条边,有的各不相等,有的有两条边相等,有的三条边都相等.所以三角形按边的相等关系分类如下:

  等边三角形是等腰三角形的一种特例.

  判定三条边能否构成三角形的依据

  △ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”.可知:

  ③a+b>c,①a+c>b,②b+c>a

  定理:三角形任意两边的和大于第三边.

  由②、③得 b―a―c

  故|a―b|

  从而得到推论:

  三角形任意两边的差小于第三边.

  上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理.另外,定理和推论是判定三条线段能否构成三角形的依据.如:三条线段的长分别是5、4、3便能构成三角形,而三条线段的长度分别是5、3、1,就不能构成三角形.


数学数与代数知识点整理(扩展7)

——孙权劝学知识点整理3篇

孙权劝学知识点整理1

  一、通假字

  孤岂欲卿治经为博士邪(通“耶”,语气词)

  二、词的积累

  ①重点词语

  卿今当涂掌事(卿,古代君对臣或朋友之间的爱称。当涂,当道,当权)

  但当涉猎(但,只。涉猎,粗略的阅读)

  刮目相待(擦)

  肃遂拜蒙母(于是,就)

  孤岂欲卿治经为博士邪(孤,古代君王的自称,可译为“我”。治,研究)

  蒙乃始就学(乃,于是,就。就,靠近)

  及鲁肃过寻阳(及,到了……的时候。过,到)

  即更刮目相待(另眼相看,用新的眼光看待。刮目,擦擦眼)

  大兄何见事之晚乎(见事,认清事物。乎,啊,表示感叹语气)

  ②一词多义

  当:1.当涂掌事(与“涂”连用译为“当道,当权”)

  2.但当涉猎(应当)

  见:1.见往事耳(动词,知道)

  2.见渔人,乃大惊(动词,看见)

  3.大兄何见事之晚乎(动词,认清,识别)

  若:1.孰若孤(动词,比得上)

  2.仿佛若有光(介词,好像)

  之:1.大兄何见事之晚乎(助词,取消句子的**性,不译)

  2.于厅室之东北角(助词,的)

  乃:1.乃不知有汉(竟)

  2.蒙乃始就学(于是,就)

  为:1.孤岂欲卿治经为博士邪(动词,做)

  2.不足为外人道也(介词,对,向)

  ③古今异义

  但当涉猎(古义:只。今义:转折连词。)

  孤岂欲卿治经为博士邪(古义:研究。今义:治理。)

  见往事耳(古义:历史。今义:过去的事情。)

  及鲁肃过寻阳(古义:到。今义:经过。)

  三、句式积累

  1.省略句

  “肃遂拜蒙母”中,“拜”后省略介词“于”,可补充为“肃遂拜于蒙母”。

  2.倒装句

  “大兄何见事之晚乎”中,“何见事”是宾语前置,正常语序应为“大兄见事何之晚乎”。

  “蒙辞以军中多务”是倒装句,正常语序应为“蒙以军中多务辞”。


数学数与代数知识点整理(扩展8)

——初三数学知识点整理 (菁选3篇)

初三数学知识点整理1

  二元一次方程组

  1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

  2、二元一次方程组的解法

  (1)代入法

  由一个二次方程和一个一次方程所组成的`方程组通常用代入法来解,这是基本的消元降次方法。

  (2)因式分解法

  在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

  (3)配方法

  将一个式子,或一个式子的某一部分通过恒等变形化为完全*方式或几个完全*方式的和。

  (4)韦达定理法

  通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

  (5)消常数项法

  当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

  解一元二次方程

  解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

  1、直接开*方法:

  用直接开*方法解形如(x—m)2=n(n≥0)的方程,其解为x=±m。

  直接开*方法就是*方的逆运算。通常用根号表示其运算结果。

  2、配方法

  通过配成完全*方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全*方公式。

  (1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

  (2)系数化1:将二次项系数化为1

  (3)移项:将常数项移到等号右侧

  (4)配方:等号左右两边同时加上一次项系数一半的*方

  (5)变形:将等号左边的代数式写成完全*方形式

  (6)开方:左右同时开*方

  (7)求解:整理即可得到原方程的根

  3、公式法

  公式法:把一元二次方程化成一般形式,然后计算判别式△=b2—4ac的值,当b2—4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。

  代数式

  1、代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2、整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3、单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:

  ①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

  ②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

  4、同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律。

初三数学知识点整理2

  1.数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  重点知识:

  初中数学第一课,认识正数与负数!新初一的来~

  2.相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  3.绝对值

  1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  中考数学知识点

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

  y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x 的增大而减小。

  ①x的取值范围是x0,

  y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x 的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象**一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,*行四边形PDEA面积=

  二次函数中考数学知识点

  二次函数的解析式有三种形式:

  (1)一般式:

  (2)顶点式:

  (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

  注意:抛物线位置由决定.

  (1)决定抛物线的开口方向

  ①开口向上.

  ②开口向下.

  (2)决定抛物线与y轴交点的位置.

  ①图象与y轴交点在x轴上方.

  ②图象过原点.

  ③图象与y轴交点在x轴下方.

  (3)决定抛物线对称轴的位置(对称轴:)

  ①同号对称轴在y轴左侧.

  ②对称轴是y轴.

  ③异号对称轴在y轴右侧.

  (4)顶点坐标.

  (5)决定抛物线与x轴的交点情况.、

  ①△>0抛物线与x轴有两个不同交点.

  ②△=0抛物线与x轴有的公共点(相切).

  ③△<0抛物线与x轴无公共点.

  (6)二次函数是否具有、最小值由a判断.

  ①当a>0时,抛物线有最低点,函数有最小值.

  ②当a<0时,抛物线有点,函数有值.

  (7)的符号的判定:

  表达式,请代值,对应y值定**;

  对称轴,用处多,三种式子相约;

  轴两侧判,左同右异中为0;

  1的两侧判,左同右异中为0;

  -1两侧判,左异右同中为0.

  (8)函数图象的*移:左右*移变x,左+右-;上下*移变常数项,上+下-;*移结果先知道,反向*移是诀窍;*移方式不知道,通过顶点来寻找。

  (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

  (10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

  ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

  ③二次函数(经过原点,则。

  (11)二次函数的解析式:

  ①一般式:(,用于已知三点。

  ②顶点式:,用于已知顶点坐标或最值或对称轴。

  (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

初三数学知识点整理3

  三角形

  分类:⑴按边分;

  ⑵按角分

  1.定义(包括内、外角)

  2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

  3.三角形的主要线段

  讨论:①定义②线的交点三角形的心③性质

  ① 高线②中线③角*分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

  5.全等三角形

  ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

  ⑵特殊三角形全等的判定:①一般方法②专用方法

  6.三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7.重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助*行线

  8.证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除