对顶角的概念是什么及性质
对顶角的概念是什么及性质
对顶角即如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角·对顶角的范围介于0度到180度之间,0度和180度不算在内。下面是小编给大家整理的对顶角的概念是什么及性质的'内容,希望能帮到大家!
对顶角的概念
在几何学中,对顶角是两个角之间的一种位置关系。两条直线相交时会产生一个交点,并产生以这个交点为顶点的四个角。称其中不相邻的两个角互为对顶角。或者说,其中的一个角是另一个的对顶角。
对顶角满足下列定理:两直线相交,对顶角相等。
用数学语言描述就是:
设直线AD、BC交于点O。则形成四个角:∠AOB、∠COD、∠AOC、∠BOD。其中,∠AOB和∠COD互为对顶角,∠AOC和∠BOD互为对顶角。∠AOB = ∠COD,∠AOC = ∠BOD。
对顶角的性质
如果两个角是对顶角,那么这两个角相等。
在同一平面内,互为对顶角的两个角相等。
对顶角的例子
如图1, 两条直线相交,构成两对对顶角。∠1与∠3为一对对顶角,∠2与∠4为一对对顶角。
注意:
1、对顶角一定相等,但是相等的角不一定是对顶角。
2、对顶角必须有共同顶点。
3、对顶角是成对出现的。
在证明过程中使用对顶角的性质时,以 图1为例,
∴∠1=∠3,∠2=∠4(对顶角相等)。
巧算对顶角
任何两条直线可以看成一个组合,这样的组合有C(n,2)=n(n-1)/2 ,每个组合有两对对顶角 ,因此n条直线相交于一点,共有2C(n,2)=n(n-1)对。即:
2条直线相交于一点,有(2)对不同的对顶角;
3条直线相交于一点,有(6)对不同的对顶角;
4条直线相交于一点,有(12)对不同的对顶角;
..............
n条直线相交于一点,有n(n-1)对不同的对顶角。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除