费马定理

著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不可能把任一个次数大于2的方幂表示成两个同方幂的和。”1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。

费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。

费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了较为完善的程度。

费马(Pierre de Fermat,1601--1665)法国数学家、物理学家。生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除