物理量的知识点整理

物理量的知识点整理1

  物理量,单位,公式

  名称,符号,名称,符号

  质量,m,千克,kg,m=pv

  温度,t,摄氏度,C

  速度,v,米/秒,m/s,v=s/t

  密度,p,千克/米,p=m/v

  力(重力),F,牛顿(牛),N,G=mg

  压强,P,帕斯卡(帕),Pa,P=F/S

  功,W,焦耳(焦),J,W=Fs

  功率,P,瓦特(瓦),w,P=W/t

  电流,I,安培(安),A,I=U/R

  电压,U,伏特(伏),V,U=IR

  电阻,R,欧姆(欧),R=U/I

  电功,W,焦耳(焦),J,W=UIt

  电功率,P,瓦特(瓦),w,P=W/t=UI

  热量,Q,焦耳(焦),J,Q=cm(t-t)

  比热,c,焦/(千克C),J/(kgC)

  真空中光速,3108米/秒

  g,9.8牛顿/千克

  15C空气中声速,340米/秒

  安全电压,不高于36伏


物理量的知识点整理扩展阅读


物理量的知识点整理(扩展1)

——高中物理知识点整理3篇

高中物理知识点整理1

  一、 亚里士多德的两个错误认识(古希腊)

  1. 力是维持物体运动的原因:物体受到力就会运动,不受力就不运动

  2. 物体做**落体运动的快慢有质量决定:质量越大,下落越快

  二、 伽利略(意大利)

  1. 力不是维持物体运动的原因,而是改变物体运动状态的原因即惯性----小球斜面实验

  2. 物体做**落体运动的快慢与物体质量无关,只与高度有关(从理论上**了亚里士多德的观点)

  3. 开创了近代物理学的认识和研究物理现象及规律的方法

  4. 发现单摆的等时性

  三、 牛顿(英国)

  1.发现了重力、万有引力的规律(没有得到万有引力常量的值)

  2.提出了经典物理学的基础-----牛顿运动学三大定律

  3.提出了光的“微粒说”----光是一束粒子流(错误的理论)

  4.牛顿环----光的一种干涉现象

  四、 胡克(德国)

  通过大量的实验发现了弹簧弹力的规律----胡克定律

  五、 开普勒(德国)

  发现太阳系天体运动三定律

  六、 卡文迪许(英国)

  通过扭秤实验测量出万有引力常量G=6.67x10-11N?m2/kg2

  七、 惠更斯(荷兰)

  1.从理论上成功的解释了波的反射、折射现象----惠更斯原理

  2.得到了单摆的周期公式

  3.提出了光的“波动说”--—光是波

  八、 富兰克林(**)

  通过风筝证实了“天电”与“地电”的**,并发明了避雷针;命名了**电荷

  九、 密立根(**)

  通过带电油滴实验发现了基本电荷量--—元电荷e=1.60x10-19C

  十、 库仑(法国)

  发明了库仑扭秤,利用扭秤,他根据实验得出了电学中的基本定律──库仑定律。把同样的结果推广到两个磁极之间的相互作用,它标志着电学和磁学研究从定性进人了定量研究;

  十一、 安培(法国)

  1.发现了电流的规律

  2.电流周围磁场的判断方法—--安培定则(右手螺旋定则)

  3.提出了安培分子电流假说—--任何物质内都存着一种环形电流即分子电流

  4.得到了安培力的规律

  十二、 奥斯特(丹麦)

  发现了电流周围会产生磁场----电流磁效应

  十三、 法拉第(英国)

  1.提出了电场的概念,并且第一个利用电场线和磁感线的形式来描述电场和磁场

  2.提出了电磁感应的规律----法拉第电磁感应定律

  十四、 特斯拉(**)

  1. 交流电的发明者

  2. 磁感应强度的单位以他的名字命名

  十五、 韦伯(德国)

  磁通量单位命名者

  十六、 洛伦兹(荷兰)

  发现了运动电荷在磁场的受力规律----洛伦兹力

  十七、 麦克斯韦(英国)

  1.建立了经典电磁场理论

  2.从理论上预言了电磁波存在—提出光是电磁波理论

  十八、 赫兹(德国)

  1.从实验上(赫兹的电火花实验)验证了电磁波的存在

  2.最早发现光电效应现象

  相关链接:(1)1895年,***物理学家波波夫和意大利青年马可尼各自**发明了无线电波。马可尼使他的发明发展为完整系统,从而成功地实现了商业应用。1897年5月18日马可尼的横跨海峡的无线通信取得成功。1901年无线电波越过大西洋…

  (2)1927年英国发明家贝尔德发明了世界上第一台电视机

  (3)1946年世界上第一台计算机诞生。

  十九、 托马斯〃杨(英国)

  通过双缝干涉实验成功的证明了光是波

  二十、 菲涅耳(法国)

  光的衍射现象----泊松亮斑

  二十一、 伦琴(德国)

  发现伦琴射线(也叫X射线,是一种频率介于紫外线与γ射线的电磁波

  重 点

  波粒二象性(按时间顺序大体排列)

  1. 普朗克提出了量子的概念并给出了量子常数即普朗克常量,成功的解释了黑体辐射规律,开创了物理学的新**----量子物理学

  量子物理学的特点:①微观;②高速(大于光速一半);③不连续

  2. 1887年赫兹偶然发现了光电效应现象

  3. 爱因斯坦利用量子物理的观点提出“光子说”成功的解释了光电效应现象,并给出了爱因斯坦光电效应方程,证明了光具有“粒子性”

  注:爱因斯坦的“光子说”与牛顿的“微粒说”在本质上是有区别的,为了研究方便我们统称为“粒子性”

  4. 丹麦物理学家波尔结合经典物理学和量子物理学提出了波尔原子理论(也叫波尔氢原子理论),但该理论是错误的理论它只能解释氢原子或类氢原子的不连续发光现象(也叫轨道量子化现象),不过由于该理论起到了承上启下的作用所以需要掌握

  5. **物理学家康普顿在研究X射线的散射时,发现康普顿效应----证明了光的“粒子性” 康普顿效应----X射线照射晶体后部分波长变长的现象

  6. 法国物理学家德布罗意提出了物质波假说并给出波长公式:λ=h/p

  7. 1927年戴维孙和J〃J汤姆孙的儿子G〃P汤姆孙成功的做出了电子的衍射实验证明了物质波的存在

  8. 量子的不确定性关系:

  1927年海森堡发现了量子的“不确定性关系”:在经典力学中,质点的运动总存在一个确定的可以预测的轨迹,因此我们可以同时确定其坐标和动量(或速动)并以此来描述它的运动状态。而实物微粒的运动具有波动性,所以它没有确定的轨迹,也就意味着它不能同时具有准确的坐标和确定的动量,这称为测不准原理。

  原子物理

  1. 英国物理学家J〃J汤姆孙发现了电子打破了原子不可再分的观念,证明了原子具有复杂结构,并

  给出了第一个原子结构模型:枣糕式模型

  2. 英籍物理学家卢瑟福通过α粒子(氦核)散射实验中的大角度偏转现象**了“枣糕式”模型,

  提出了原子的“核式结构”模型。

  3. 法国物理学家贝克勒尔发现了天然放射性现象,证明了原子核具有复杂结构

  4. 贝克勒尔的学生居里夫人和她的丈夫皮埃尔〃居里发现了两种放射性元素钋和镭

  5. 英籍物理学家卢瑟福利用α粒子(氦核)轰击氮原子核,发现了质子,并提出了中子的概念

  6. 卢瑟福的学生查德威克利用α粒子(氦核)轰击铍核,发现了中子

  7. 爱因斯坦提出质能方程

  8. 爱因斯坦19世纪30年代提出划时代的理论---狭义相对论

  狭义相对论的两个基本假设:①光速不变原理----无论以任何物体为参考系光的速度都是一样的。②相对性原理----时间、空间、质量都具有相对性

高中物理知识点整理2

  1、基本概念:

  力、合力、分力、力的*行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、*均速度、*均速率、加速度、共点力*衡(*衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

  2、基本规律:

  匀变速直线运动的基本规律(12个方程);

  三力共点*衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  动量定理与动能定理(力与物体速度变化的关系冲量与动量变化的关系功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);

  机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

  总结:以上就是高考物理重要知识点:力学和电磁学的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!

高中物理知识点整理3

  一、质点的运动(1)------直线运动

  1)匀变速直线运动

  1.*均速度V*=s/t(定义式) 2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V*=(Vt+Vo)/2 4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V*t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)*均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)**落体运动

  1.初速度Vo=02.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

  注:

  (1)**落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比*地小,方向竖直向下)。

  (3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为**落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  二、质点的运动(2)----曲线运动、万有引力

  1)*抛运动

  1.水*方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

  3.水*方向位移:x=Vot 4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水*夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,

  位移方向与水*夹角α:tgα=y/x=gt/2Vo

  8.水*方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)*抛运动是匀变速曲线运动,加速度为g,通常可看作是水*方向的匀速直线运与竖直方向的**落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水*抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在*抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  2)匀速圆周运动

  1.线速度V=s/t=2πr/T 2.角速度ω=/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  3)万有引力

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  三、力(常见的力、力的合成与分解)

  1)常见的力

  1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

  7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  注:

  (1)劲度系数k由弹簧自身决定;

  (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

  (3)fm略大于μFN,一般视为fm≈μFN;

  (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

  (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

  (6)安培力与洛仑兹力方向均用左手定则判定。

  2)力的合成与分解

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循*行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用**号表示力的方向,化简为代数运算。

  四、动力学(运动和力)

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,*衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的*衡F合=0,推广 {正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:*衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  五、振动和波(机械振动与机械振动的传播)

  1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

  2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

  3.受迫振动频率特点:f=f驱动力

  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

  5.机械波、横波、纵波〔见第二册P2〕

  6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

  7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

  8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

  9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

  10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

  注:

  (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

  (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

  (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

  (4)干涉与衍射是波特有的;

  (5)振动图象与波动图象;

  (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

  六、冲量与动量(物体的受力与动量的变化)

  1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

  3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

  4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

  5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

  6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

  7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

  8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

  9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

  v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)

  10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

  11.**m水*速度vo射入静止置于水*光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

  E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对**相对长木块的位移}

  七、功和能(功是能量转化的量度)

  1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

  4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P*=Fv* {P:瞬时功率,P*:*均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2-mvo2/2或W合=ΔEK

  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

  八、分子动理论、能量守恒定律

  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

  2.油**测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力(1)r

  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

  (3)r>r0,f引>f斥,F分子力表现为引力

  (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

  5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

  W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

  6.热力学第二定律

  克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

  开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

  7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

  注:

  (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

  (2)温度是分子*均动能的标志;

  3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

  (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

  (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大δu>0;吸收热量,Q>0

  (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

  (7)r0为分子处于*衡状态时,分子间的距离;

  (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

  九、气体的性质

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

  热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  十、电场

  1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.*行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  常见电容器〔见第二册P111〕

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

  类* 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的*行极板中:E=U/d)

  抛运动 *行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后*分,原带同种电荷的总量*分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷**有关;

  (5)处于静电*衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  十一、恒定电流

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

  3.电阻、电阻定律:R=L/S{:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

  电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

  电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

  电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

  功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

  十二、磁场

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m

  2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿*行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

  十三、电磁感应

  1.[感应电动势的大小计算公式]

  1)E=nΔ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,Δ/Δt:磁通量的变化率}

  2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

  3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

  4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

  2.磁通量=BS {:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

  3.感应电动势的**极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  *4.自感电动势E自=nΔ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

  注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

  十四、交变电流(正弦式交变电流)

  1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

  2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

  3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

  4.理想变压器原副线圈中的电压与电流及功率关系

  U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

  5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

  6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

  S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。

  注:

  (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

  (2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

  (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

  (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

  (5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

  十五、光的反射和折射(几何光学)

  1.反射定律α=i {α;反射角,i:入射角}

  2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

  3.全反射:

  1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

  2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角


物理量的知识点整理(扩展2)

——中考物理知识点整理3篇

中考物理知识点整理1

  光的反射定律

  反射光线与入射光线、法线在同一*面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角

  可归纳为:三线一面,两线分居,两角相等

  理解:

  (1)由入射光线决定反射光线,叙述时要反字当头

  (2)发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中

  (3)反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度

  *面镜对光的作用

  在光的反射中光路可逆

  *面镜对光的作用

  (1)成像

  (2)改变光的传播方向

中考物理知识点整理2

  1.*均速度只能是总路程除以总时间。求某段路上的*均速度,不是速度的*均值,只能是总路程除以这段路程上花费的所有时间,包含中间停的时间。

  2.密度不是一定不变的。密度是物质的属性,和质量体积无关,但和温度有关,尤其是气体密度跟随温度的变化比较明显。

  3.天*读数时,游码要看左侧,移动游码相当于在天*右盘中加减砝码。

  4.匀速直线运动的速度一定不变。只要是匀速直线运动,则速度一定是一个定值。

  5.受力分析的'步骤:确定研究对象;找重力;找接触物体;判断和接触物体之间是否有压力、**力、摩擦力、拉力等其它力。

  6.*衡力和相互作用力的区别:*衡力作用在一个物体上,相互作用力作用在两个物体上。

  7.物体运动状态改变一定受到了力,受力不一定改变运动状态。力是改变物体运动状态的原因。受力也包含受包含受*衡力,此时运动状态就不变。

  8.惯性大小和速度无关。惯性大小只跟质量有关。速度越大只能说明物体动能大,能够做的功越多,并不是惯性越大。

  9.惯性是属性不是力。不能说受到,只能说具有,由于。

  10.物体受*衡力物体处于*衡状态(静止或匀速直线运动)。这两个可以相互推导。物体受非*衡力:若合力和运动方向一致,物体做加速运动,反之,做减速运动。


物理量的知识点整理(扩展3)

——浮力物理知识点整理归纳

浮力物理知识点整理归纳1

  1、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它竖直向上的力 叫浮力。

  2、浮力方向:竖直向上,施力物体:液(气)体

  3、浮力产生的原因(实质):液(气)体对物体向上的压力大于向下的压力,向上、向下的压力差 即浮力。

  4、物体的浮沉条件:

  (1)前提条件:物体浸没在液体中,且只受浮力和重力。

  (2)请根据示意图完成下空。

  下沉 悬浮 上浮 漂浮

  F浮 G F浮 = G F浮 G F浮 = G

  物 液 物

  (3)说明:

  ① 密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都悬浮(或漂浮)。

  ②一物体漂浮在密度为的液体中,若露出体积为物体总体积的1/3,则物体密度为(2/3)

  分析:F浮 = G 则:液V排g =物Vg

  物=( V排/V)?液= 2 3液

  ③ 悬浮与漂浮的比较

  相同: F浮 = G

  不同:悬浮液 =V排=V物

  漂浮液 物;v排④判断物体浮沉(状态)有两种方法:比较F浮 与G或比较液与物 。

  ⑤ 物体吊在测力计上,在空中重力为G,浸在密度为的液体中,示数为F则物体密度为:物= G/ (G-F)

  ⑥冰或冰中含有木块、蜡块、等密度小于水的物体,冰化为水后液面不变,冰中含有铁块、石块等密大于水的物体,冰化为水后液面下降。

  5、阿基米德原理:

  (1)内容:浸入液体里的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力。

  (2)公式表示:F浮 = G排 =液V排g 从公式中可以看出:液体对物体的浮力与液体的密度和物体排开液体的体积有关,而与物体的质量、体积、重力、形状 、浸没的深度等均无关。

  (3)适用条件:液体(或气体)

  6:漂浮问题五规律:(历年中考频率较高,)

  规律一:物体漂浮在液体中,所受的浮力等于它受的重力;

  规律二:同一物体在不同液体里,所受浮力相同;

  规律三:同一物体在不同液体里漂浮,在密度大的液体里浸入的体积小;

  规律四:漂浮物体浸入液体的体积是它总体积的.几分之几,物体密度就是液体密度的几分之几;

  规律五:将漂浮物体全部浸入液体里,需加的竖直向下的外力等于液体对物体增大的浮力。

  7、浮力的利用:

  (1)轮船:

  工作原理:要使密度大于水的材料制成能够漂浮在水面上的物体必须把它做成空心的,使它能够排开更多的水。

  排水量:轮船满载时排开水的质量。单位 t 由排水量m 可计算出:排开液体的体积V排= ;排开液体的重力G排 = m g ;轮船受到的浮力F浮 = m g 轮船和货物共重G=m g 。

  (2)潜水艇:

  工作原理:潜水艇的下潜和上浮是靠改变自身重力来实现的。

  (3)气球和飞艇:

  工作原理:气球是利用空气的浮力升空的。气球里充的是密度小于空气的气体如:氢气、氦气或热空气。为了能定向航行而不随风飘荡,人们把气球发展成为飞艇。

  (4)密度计:

  原理:利用物体的漂浮条件来进行工作。

  构造:下面的铝粒能使密度计直立在液体中。

  刻度:刻度线从上到下,对应的液体密度越来越大

  8、浮力计算题方法总结:

  (1)确定研究对象,认准要研究的物体。

  (2)分析物体受力情况画出受力示意图,判断物体在液体中所处的状态(看是否静止或做匀速直线运动)。

  (3)选择合适的方法列出等式(一般考虑*衡条件)。

  计算浮力方法:

  ①称量法:F浮= G-F(用弹簧测力计测浮力)。

  ②压力差法:F浮= F向上 - F向下(用浮力产生的原因求浮力)

  ③漂浮、悬浮时,F浮=G (二力*衡求浮力;)

  ④F浮=G排 或F浮=液V排g (阿基米德原理求浮力,知道物体排开液体的质量或体积时常用)

  ⑤根据浮沉条件比较浮力(知道物体质量时常用)


物理量的知识点整理(扩展4)

——《观潮》知识点整理3篇

《观潮》知识点整理1

  钱塘江是浙江省最大的河流,下流入杭州湾。钱塘江大潮之所以特别宏伟,是因为钱塘江的出海口地形特殊。出海口宽达上百公里,到了澉浦,收缩到二十公里,而到了盐官镇附近,江道又猛收到三公里左右,因此,外宽内窄,呈喇叭形。海潮来时,以每秒十米的流速,簇拥着大量的海水向江内推进。由于里边江道突然变窄,所以大量潮水被*夹住;又加上这一带河床高低悬殊也很大,从而向东流的江水冲击着由东向西涌来的潮水,前浪叠后浪,互相拥挤、堆积,进到盐官镇时江道最窄,形成最高峰。于是激起一道数米高的白浪水墙,形成闻名中外的天下奇观。每年农历八月十七、十八日,正是观潮的最好时候,所以人们竞相前往海宁观潮。

《观潮》知识点整理2

  横卧:横躺着。本课指钱塘江横现在人们眼前。

  屹立:高耸地直立着。

  横贯:横向贯穿。本课指钱塘江潮头从这岸到那岸横着通过去。

  余波:指大潮过去以后剩下的波浪。

  人声鼎沸:鼎,古代煮东西的器物。人声鼎沸是形容人声喧闹、嘈杂,像水在锅里沸腾了一样。

  水天相接:江面和天际会合,指地*线。

  浩浩荡荡:形容水势很大。

  山崩地裂:崩,倒塌;裂,裂开。山崩地裂多发生在地震的时候,本课形容潮来的声音很大,如山崩地裂一般。

  漫天卷地:漫,满、遍。漫天卷地是铺天盖地的意思。本课形容大潮余波水势汹涌。

《观潮》知识点整理3

  这是一篇写景的课文。课文描绘了农历八月十八日钱塘江大潮的奇异景象,表达了作者对祖国壮丽山河的热爱之情。

  全文共有五个自然段。

  第1自然段写钱塘江大潮自古以来被称为天下奇观。

  第2—5自然段按照“潮来前、潮来时、潮头过后”的顺序记叙了钱塘江大潮的一次过程,具体描绘了钱塘江大潮奇异壮观的景象。

  第2自然段写潮来前的景象和人们盼望看到大潮的心情。这一段先交代观潮的时间、地点。接着描绘了江面的景象及远处的小山、近处的建筑,从而写出了潮来前的*静。之所以写潮来前的*静,是为了给潮来时的景象作铺垫,使人读到“潮来时”的景象时自然与先前的“*静”形成强烈对比,从而感受到大潮的壮观。在这部分的描写中“江面很*静,越往东越宽”这句话是不可忽视的',正是由于钱塘江入海口地势的特点,才有了钱塘江大潮这一“天下奇观”形成。最后写钱塘江大堤上等待观潮的人极多和人们盼望看到大潮的心情。“早已人山人海”“昂首东望”“等着,盼着”足以看出人们的心情,也正说明这“天下奇观”对人们有着多么大的吸引力。

  第3、4自然段按照由远及近的顺序描写潮来时的奇异景观。这是文章的重点内容,也是教学的重点部分。第3自然段先写从远处传来的“好像闷雷在滚动”的隆隆的响声,但“江面还是风*浪静,看不出什么变化”,声音像闷雷说明还很远,江面还没有变化却听到声音,可以想象大潮来势之大。接着再写随着响声越来越大,“只见东边水天相接的地方出现了一条白线”,“水天相接”说明是在远处,之所以看到大潮像“一条白线”,是因为水天相接的东边江面宽阔,潮头不高的缘故。

  第4自然段具体形象地描绘大潮越来越近时的壮观景象。先写“白线”很快移来,“逐渐拉长,变粗,横贯江面”写出了大潮越来越近,水势逐渐加大的过程。接着写“再近些”时,“白浪翻滚,形成一道六七米高的白色城墙”,从颜色和高度这两个角度写出了大潮的气势,这是由于东宽西窄的地形,使得白浪翻滚的潮水形成六米多高的城墙。最后写“越来越近”时,大潮更加惊天动地、气吞山河,“浪潮越来越近,犹如千万匹白色战马齐头并进,浩浩荡荡地飞奔而来;那声音如同山崩地裂,好像大地都被震得颤动起来”。这句话中作者运用了两个比喻句,从景象和声音两个角度,形象具体地写出了大潮的水势之大,来势之猛,真是气吞山河,无比壮观。

  第5自然段写潮头过后的江面的景象与变化。一是写“霎时,潮头奔腾**”说明大潮过去时急且快,可是余波未尽,“漫天卷地”“风号浪吼”两个词写出了余波之大。二是写江面恢复*静以后,江水涨了六七米高。显然,这时的*静与潮来前的*静完全不同。这两点描写从另一角度进一步说明钱塘江大潮确实是天下奇观。


物理量的知识点整理(扩展5)

——*古代文学知识点整理3篇

*古代文学知识点整理1

  先秦

  先秦即秦代以前,指公元前221年秦朝**天下以前的历史,包括*原始社会、**社会和早期封建社会三种社会形态。

  1、上古神话

  *古代神话名篇有:

  女娲(wā)补天、后羿(yì)射日、精卫填海、(*)开天辟地、黄帝战蚩(chī)尤(刘安:《淮南子》等。)

  2、先秦散文

  A、儒家经典

  “四书”指《论语》《孟子》《大学》《中庸》。

  “五经”指《诗经》《尚书》《礼记》《易经》《春秋》。

  “六经”又称六艺 (《乐》)。

  B、历史散文。

  《左传》(编年体)《战国策》(国别体)《国语》(国别体)

  “春秋三传”《左传》《谷梁传》《公羊传》。

  C、诸子百家散文著名的有:

  ①老子,李耳,字聃(dān),道家学派创始人,著有《道德经》。

  ②孔子名丘,字仲尼,是儒家学派创始人,《论语》是孔子弟子记载孔子和他的学生言行的书。(《 季氏》《荷》)

  ③墨子名翟(dí),墨家学派创始人,《墨子》53篇。

  ④孟子名轲,字子舆,儒家学派继承者。《孟子》是孟子学生记录孟子言行的书。(《得道多助,失道寡助》《生于忧患,死于安乐》《庄暴见孟子》《鱼我所欲也》。)

  ⑤庄子,名周,战国道家著《庄子》。(《庖丁解牛》)

  ⑥荀子, 战国儒家,著《荀子》32篇。(《劝学》)

  ⑦韩非子,法家,著《韩非子》。(《扁鹊见蔡桓公》《五蠹》《智子疑邻》。 )

  ⑧《吕氏春秋》又称《吕览》,是秦相吕不韦和他的门客的集体创作。(《察今》)

  ⑨李斯的**作是散文《谏逐客书》。

  3、先秦诗歌

  ①《诗经》。《诗经》是我国第一部诗歌总集,共305篇。分风、雅、颂三类。风是民歌,雅是乐歌,颂是祭歌。诗经的表现手法是比、兴、赋。

  “比”即比喻,以彼物比此的。

  “兴”先言他物以引起所咏之词。

  “赋”直陈其事。

  ②《楚辞》。西汉学者刘向把屈原宋玉等人的作品编辑成书,定名为《楚辞》。屈原(前340?-前277?)名*,我国伟大爱国**诗人。曾在楚国任左徒三闾大夫等职。**作是《离骚》《九歌》《九章》。

  汉朝

  汉朝在文学史上一般分为东汉西汉,东西之分是国都所在地来命名的,两汉的主要文学成就包括:汉赋,散文,诗歌。

  1、两汉散文

  ①贾谊,世称贾生。又称贾长沙,贾太傅。著《新书》十卷。《过秦论》、《论积贮疏》是他的**作。

  ②司马迁,字子长,伟大的史学家、文学家。著《史记》首创“纪传体”,分为本纪、世家、列传、表、书。鲁迅称《史记》为“史家之绝唱,无韵之离骚”。

  ③班固的《汉书》、刘向编订的《战国策》都名垂史册。

  2、乐府民歌和赋

  ①乐府民歌:乐,民乐;府,官府。乐府原为汉代音乐机关所搜集的诗。《孔雀东南飞》是汉乐府叙事发展的高峰。最早见于南朝徐陵编纂的《玉台新咏》。

  ②赋是我国古代韵文和散文的综合体。司马相如的《子虚赋》《上林赋》。贾谊的《吊屈原赋》都很有名。

  魏晋南北朝

  魏晋南北朝是*文学发展史上一个充满活力的创新期,诗、赋、小说等体裁,在这一时期都出现了新的时代特点,并奠定了它们在此后的发展方向。

  1、魏晋南北朝的诗歌和散文

  ①“三曹”。“三曹”即曹氏父子曹操、 曹丕、 曹植。曹操的《观沧海》,曹丕的《蒿里行》,曹植的《名都篇》《白马篇》《洛神赋》都很有名。

  ②“建安七子”指孔融、陈琳、王粲、徐干、阮 禹(yǔ)应扬(yáng)刘桢。王粲的《七哀诗》成就最高。

  ③“竹林七贤”指嵇康、阮籍、向秀等七位作者。

  ④陶渊明,名潜,字元亮,世称靖节先生。 《桃花源记》《归去来辞》《归园田居》《饮酒》是传世之作。

  ⑤此外, 诸葛亮《出师表》、范晔(yè)《后汉书》、陈寿《三国志》、王羲之《兰亭集序》、刘勰《文心雕龙》、郦道元《水经注》都名垂史册。

  2、魏晋南北朝的小说(小说的发展期)

  ①志怪小说以干宝《*》为**。 《干将莫邪》。

  ②轶事小说以刘义庆的《世说新语》为**。《周处》。

  唐代

  唐代文学知识点的内容是唐诗。唐诗泛指创作于唐朝的诗。唐诗是**民族最珍贵的文化遗产之一,是**文化宝库中的一颗明珠。

  1、“初唐四杰”:“初唐四杰”是王勃、杨炯、卢照邻、骆宾王。王勃的《送杜少府之任蜀川》《腾王阁序》脍炙人口。

  2、“山水田园诗人”:王维、孟浩然。王维字摩诘,一位大诗人,著名“画家和音乐家”;人们说他“诗中有画,画中有诗”。名作有《使至塞上》《山居秋暝》。孟浩然是王维密友,名篇有《过故人庄》。

  3、“边塞诗人”:高适、岑参、王昌龄、王之涣。高适《燕歌行》、岑(cén)参(shēn)《白雪歌》、王昌龄《芙蓉楼送辛浙》、王之涣《登鹳雀楼》都是名篇。

  4、诗仙李白,诗圣杜甫,人民诗人白居易。

  李白,字太白,号青莲居士。李白是伟大的浪漫**诗人。名作有《将进酒》、《蜀道难》、《梦游天姥吟留别》《秋浦歌》《静夜诗》《赠汪伦》等。著《李太白集》。

  杜甫,字子美,又称杜工部,是伟大的现实**诗人。名作有“三吏”(《潼关吏》《石壕吏》《新安吏》)“三别”(《无家别》《垂老别》《新婚别》)《北征》《兵车行》《茅屋为秋风所破歌》等。

  白居易,字乐天,号香山居士。双称白香山,白太傅、白居易主张“文章合为时而著,歌诗合为事而作”。名作《长恨歌》《琵琶行》。

  5、“小李杜”:李商隐,杜牧,著有《樊川文集》。

  6、诗中“三李”: 为李白,李商隐,李贺。

  宋代

  宋朝文学主要涵盖了宋代的词、诗、散文、话本小说、戏曲剧本等等,其中词的创作成就最高,诗、散文次之,话本小说又次之。

  1、宋词和宋诗

  ①以苏辛为**的宋词豪放派。苏轼,字子瞻,东坡居士,其诗、文、字画都有极高成就。与其父苏洵、弟苏辙号称“三苏”。著有《苏东坡集》。辛弃疾,字幼安,号稼轩,有《稼轩长短句》。

  ②以柳永、李清照、姜夔等人为**的宋词婉约派。柳永,李清照, 姜夔。

  ③伟大的爱国诗人陆游和伟大的民族英雄文天祥。陆字务观,号放翁,著有《剑南诗稿》。文天祥,字履善又字宋瑞,自号文山,著《文山全集》,名篇有《正气歌》《过伶仃洋》。

  2、宋代散文

  ①著名的“唐宋八大家”。唐宋八大家是:韩愈、柳宗元、欧阳修、王安石、苏洵、苏轼、曾巩。

  ②范仲淹,字希文,谥号文正公。《岳阳楼记》为千古名篇。

  3、宋人话本

  话本是“说话”艺人的底本。著名话本有《大宋宣和遗事》(内有水浒故事)《三国志*话》(后演进为《三国演义》)。

  元代

  和前代文学相比,元代文学中最突出的成就在戏曲方面,后人常把“元曲”和“唐诗”、“宋词”并称。

  1、元曲四大家

  ①关汉卿,号已斋叟,名作有《窦娥冤》《望江亭》《拜月亭》《救风尘》。

  ②郑光祖,**作是《倩女离魂》。

  ③白朴,名作有《墙头马上》。

  ④马致远, 名作有《汉宫秋》。

  2、十大悲剧(主要是前六部)

  ①关汉卿的《窦娥冤》

  ②纪君的《赵氏孤儿》

  ③白朴的《梧桐雨》

  ④马致远的《汉宫秋》

  ⑤洪升的《长生殿》

  ⑥孔尚任的《桃花扇》

  ⑦冯梦龙的《精忠魂》

  ⑧孟称舜的《娇红记》

  ⑨李玉的《精忠谱》

  ⑩方成培的《雷峰塔》

  3、王实甫和《西厢记》

  王实甫,字德信。《西厢记》的主题是反对封建礼教追求婚姻爱情幸福。


物理量的知识点整理(扩展6)

——中考必考物理知识点整理3篇

中考必考物理知识点整理1

  01、声现象

  1.长啸一声,山鸣谷应【物理原理】人在崇山峻岭中长啸一声,声音通过多次反射,可以形成洪亮的回音,经久不息,似乎山在狂呼,谷在回音。

  2.开水不响,响水不开【物理原理】水沸腾之前,由于对流,水内气泡一边上升,一边上下振动,大部分气泡在水内压力下破裂,其破裂声和振动声又与容器产生共鸣,所以声音很大。水沸腾后,上下等温,气泡体积增大,在浮力作用下一直升到水面才破裂**,因而响声比较小。

  3.闻其声如见其人【物理原理】根据音色就能分辨出熟悉的人。

  4.余音绕梁【物理原理】声音的传播与反射。

  5.隔墙有耳【物理原理】固体可以传声。

  02、光现象

  1.一滴水可见太阳,一件事可见精神【物理原理】一滴水相当于一个凸透镜,根据凸透镜成像的规律,透过一滴水可以有太阳的像,小中见大。

  2.坐井观天,所见甚少【物理原理】由于光沿直线传播,由几何作图知识可知,青蛙的视野将很小。

  3.摘不着的是镜中月,捞不着的是水中花【物理原理】*面镜成的像为虚像。

  4.猪八戒照镜子——里外不是人【物理原理】根据*面镜成像的规律,*面镜所成的像大小相等,物像对称,因此猪八戒看到的像和自已“一模一样”,仍然是个猪像,自然就“里外不是人了”。

  5.玉不琢,不成器【物理原理】玉石没有研磨之前,其表面凸凹不*,光线发生漫反射,玉石研磨以后,其表面*滑,光线发生镜面反射。

  6.盲人点灯——白费蜡【物理原理】人们能看到世上万事万物,是因为太阳光或用来照明的光照射在物体上被物体反射后的光线进入人眼,反射光线进入不了盲人眼中,所以盲人看不见物体。

  03、热现象

  1.破镜不能重圆【物理原理】当分子间的距离较大时(大于几百埃),分子间的引力很小,几乎为零,所以破镜很难重圆。

  2.墙内开花墙外香【物理原理】由于分子在不停的做无规则运动,墙内的花香就会扩散到墙外。

  3.有麝自然香,何须迎风扬【物理原理】扩散现象。

  4.下雪不寒化雪寒【物理原理】雪是高空中的水蒸气凝华或水滴凝固形成的,凝华、凝固都是放热过程,化雪是融化过程,要吸热。

  5.水缸出汗,不用挑担【物理原理】水缸中的水由于蒸发,水面以下部分温度比空气温度低,空气中的水蒸气遇到温度较低的外表面就产生了液化现象,水珠附在水缸外面。晴天时由于空气中水蒸气含量少,虽然也会在水缸外表面液化,但微量的液化很快又蒸发了,不能形成水珠。而如果空气潮湿,水蒸发就很慢,水缸外表面的液化大于汽化,就有水珠出现了.空气中水蒸气含量大,降雨的可能性大,当然不需要挑水浇地了。

  6.霜前冷,雪后寒【物理原理】在深秋的夜晚,地面附近的空气温度骤然变冷(温度低于0℃以下),空气中的水蒸气凝华成小冰晶,附着在地面上形成霜,所以有"霜前冷"的感觉。雪熔化时要需吸收热量,使空气的温度降低,所以我们有"雪后寒"的感觉。

  7.扇子有凉风,宜夏不宜冬【物理原理】夏天扇扇子时,加快了空气的流动,使人体表面的汗液蒸发加快,由于蒸发吸热,所以人感到凉快。

  8.金不怕火来炼,真理不怕争辩【物理原理】从金的熔点来看,虽不是最高的,但也有1068℃,而一般火焰的温度为800℃左右,由于火焰的温度小于金的熔点,所以金不能熔化。

  9.瑞雪兆丰年【物理原理】下到地上的雪有许多松散的空隙,里面充满着不流动的空气,是热的不良导体,当它覆盖在农作物上时,可以很好的防止热传导和空气对流,因此能起到保温作用。

  10.釜底抽薪【物理原理】液体沸腾有两个条件:一是达到沸点,二是继续吸热。“抽薪”以后,液体继续无法吸热。

  04、力与运动

  1.泥鳅黄鳝交朋友——滑头对滑头【物理原理】泥鳅黄鳝的表面都光滑且润滑,摩擦力小。

  2.一个巴掌拍不响【物理原理】力是物体对物体的作用,一只巴掌要么拍另一只巴掌,要么拍在其它物体上才能产生力的作用,才能拍响。

  3.人往高处走,水往低处流【物理原理】水往低处流是自然界中的一条客观规律,原因是水受重力影响由高处流向低处。

  4.坐地日行八万里【物理原理】运动和静止的相对性。

  05、力与机械

  1.小称砣压千斤【物理原理】根据杠杆*衡原理,如果动力臂是阻力臂的几分之一,那么动力就是阻力的几倍。如果称砣的力臂很大,那么“一两拨千斤”是完全有可能的。

  2.四两拨千斤【物理原理】杠杆的*衡条件,增大动力臂与阻力臂的比,只需用较小的动力就能撬起很重的物体。

  06、压强与浮力

  1.麻绳提豆腐——提不起来【物理原理】在压力一定时,如果受力面积小,那么压强就大。

  2.如坐针毡【物理原理】由压强公式可知,当压力一定时,如果受力面积越小,则压强越大。人坐在这样的毡子上就会感觉极不舒服。

  3.鸡蛋碰石头——自不量力【物理原理】鸡蛋碰石头,虽然力的大小相同,但每个物体所能承受的压强一定,超过这个限度,物体就可能被损坏。鸡蛋能承受的压强小,所以鸡蛋将破裂。

  4.磨刀不误砍柴工【物理原理】减小受压面积,增大压强。

  5.大船漏水——有进无出【物理原理】液体内部存在压强,船破后,船外的水被压进船内,直到船内外水面相*,此刻船内的水也不会向外流。

  6.水上的葫芦——沉不下去【物理原理】葫芦的密度小于水的密度,故只能漂浮在水面上。

  07、电磁学

  1.千里眼,顺风耳【物理原理】人们利用电磁波传送声音和图像信号,使古代神话中的"千里眼,顺风耳"变为现实。现在,人类的视野已远远超过了"千里"。

  2.一荣俱荣,一损俱损【物理原理】串联电路特点。

中考必考物理知识点整理2

  声现象

  1,声音的发生:由物体的振动而产生。振动停止,发声也停止。

  2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。

  3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。

  4.利用回声可测距离:S=1/2vt

  5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。

  6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。

  7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。

  电学

  1.电荷的定向移动形成电流(金属导体里**电子定向移动的方向与电流方向相反),规定正电荷的定向移动方向为电流方向。

  2.电流表不能直接与电源相连。

  3.电压是形成电流的原因,安全电压应不高于36V,家庭电路电压220V。

  4.金属导体的电阻随温度的升高而增大(玻璃温度越高电阻越小)。

  5.能导电的物体是导体,不能导电的物体是绝缘体(错,“容易”,“不容易”)。

  6.在一定条件下导体和绝缘体是可以相互转化的。

  7.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  8.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  物态变化

  (1)熔化:固→液,吸热(冰雪融化)

  (2)凝固:液→固,放热(水结冰)

  (3)汽化:液→气,吸热(湿衣服变干)

  (4)液化:气→液,放热(液化气)

  (5)升华:固→气,吸热(樟脑丸变小)

  (6)凝华:气→固,放热(霜的形成)

中考必考物理知识点整理3

  1、液体压强跟液柱的粗细和形状无关,只跟液体的深度有关。深度是指液面到液体内某一点的距离,不是高度。

  固体压强先运用F=G计算压力,再运用P=F/S计算压强,液体压强先运用P=gh计算压强,再运用F=PS计算压力(注意单位,对于柱体则两种方法可以通用)

  2、托里拆利实验水银柱的高度差和管子的粗细倾斜等因素无关,只跟当时的大气压有关。

  3、浮力和深度无关,只跟物体浸在液体中的体积有关。浸没时V排=V物,没有浸没时V排

  求浮力要首先看物体的状态:若漂浮或悬浮则直接根据F浮=G计算,若有弹簧测力计测可以根据F浮=G-F拉计算,若知道密度和体积则根据F浮=gv计算。

  4、有力不一定做功。有力有距离,并且力距离要对应才做功。

  5、简单机械的机械效率不是固定不变的。滑轮组的机械效率除了跟动滑轮的重力有关外还跟所提升物体的重力有关,物体越重,拉力也越大,机械效率越高,但动滑轮的重力不变。

  6、物体匀速水*运动时,动能和势能不一定不变。此时还要考虑物体的质量是否发生变化,例如洒水车,投救灾物资的飞机。

  7、机械能守恒时,动能最大,势能最小。可以由容易分析的高度和形变大小先判断势能,再判断动能的变化。

  8、分子间的引力和斥力是同时存在,同时增大和减小。只是在不同的变化过程中,引力和斥力的变化快慢不一样,导致最后引力和斥力的大小不一样,最终表现为引力或斥力。

  9、分子间引力和大气压力的区别:分子力凡是相互吸引的都是因为分子间有引力,但如果伴随着空气被排出或大气压强的变化则说明是大气压力。例:两块玻璃沾水后合在一起分不开是大气压力,水面上提起玻璃弹簧测力计示数变小是因为分子间有引力。

  10、物体内能增大,温度不一定升高(晶体熔化,液化沸腾);物体内能增加,不一定是热传递(还可以是做功);物体吸热,内能一定增加;物体吸热温度不一定升高(晶体熔化,液体沸腾);物体温度升高,内能不一定升高(还和物体的质量等因素有关);物体温度升高,不一定是热传递(还可以是做功)。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除