小学数学鸡兔同笼教学设计

小学数学鸡兔同笼教学设计

  教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。下面是小编收集整理的相关教学设计,希望对您的教学有所帮助。

  小学数学鸡兔同笼教学设计 篇1

  教学内容:

  数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》80~81页.

  教学目标:

  1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

  2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

  教学重点:

  明确鸡兔同笼问题数量关系。

  教学难点:

  初步形成解决此类问题的一般性。

  教学过程:  一、历史激趣,导入新课(3分)

  导语:老师听说我们某某班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。)谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历史上著名的数学趣题 “鸡兔同笼”。(板书:鸡兔同笼)

  

  1、分析题意:这道题目是什么意思?(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94条腿。问有多少只野鸡、多少只兔子?)

  2、出示例题:贴出例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题) 你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗? 同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)

  过渡:看来这么大的数据,同学们尝试猜测有一定的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。

  二、化难为易,寻找规律(15分)

  (1)如果 鸡兔共6只,共有22条腿,尝试猜测一下鸡、兔各 有多少只?

  (2)鸡兔共6只不变,腿数变为20条腿,鸡兔各几只?你是怎猜测出来的?

  (3)鸡兔共6只不变,鸡兔的只数还有其它情况吗?腿数呢

  (4) 请同学们借助表格1,整理一下我们的解题过程;

  头数 鸡(只) 兔(只) 腿数

  (4)(拿其中一名同学的表格在展示台展示)请同学们观察分析这些数据,看看有什么规律?

  设想生答:

  1、满足鸡兔共五只的条件;

  2、鸡的只数在逐一增多;

  3、兔的只数在逐一减少;腿的条数也在减少;

  4、鸡增加一只兔减少一只,腿数减少两条)根据情况追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?

  教师小结:由于鸡兔的只数是固定的,每减少一只兔就要增加一只鸡,腿的总数就减少两条;

  过渡:刚才我们运用列表的方法解决了简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?板书:列表法

  三、汇报交流 构建新知

  (1)、学生独立完成,教师巡视。

  (选出:1逐一列表法2腿数少小幅度跳跃3腿数多大幅度跳跃4跳跃逐一相结合5取中列表)

  (2)、学生汇报:

  谁愿意来汇报你尝试猜测的过程

  1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(腿数多或少说明什么?怎样进行调整的也就是调整的方法)(生:因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)

  还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。

  你们认为这种方法有什么特点?(板书:逐一)

  小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;

  2)、请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?)

  问:你们觉得这种方法怎么样?(简便、快捷)

  3)、请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从 只一下调整到 只的)

  4)、请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)

  小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)

  5)、请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)

  还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?

  小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)

  (3)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)

  4)你最喜欢那种列表方法?理由呢?

  (5)、同学们还有其他的方法解决这道题吗?

  直观画图法:大家明白了吗?你觉得这种解法怎么样?

  小结:画图的方法非常直观便于观察、非常容易理解。

  (6)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。

  过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。

  四、方法应用,巩固新知(5分)

  过渡语:鸡兔同笼问题由我国传到了日本叫做龟鹤问题,日本的龟鹤问题和我国的鸡兔同笼问题有联系吗?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,

  基本题;请看题:

  (1)迎奥运学校开展乒乓球比赛,有12个球案在进行单打和双打比赛,共有30人正在比赛,单打、双打球案各有几张?

  独立完成后学生汇报:

  你采用的是那种列表方法?

  为什么要选用这种列表方法?

  谁有不同的列表方法?

  就这道题而言你认为用哪种方法解决最好?

  单双打问题与鸡兔同笼问题有什么联系?日

  那还有什么问题与鸡兔同笼有联系呢?到我们的实际生活中去看一看,请看题;(课件出示)

  五、分析应用,提高升华(14分)

  (一)分析数量关系,提高认知水平

  1、在我们购物消费中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

  小明买了6角和8角的两种铅笔共7支花了5元钱,分别买了多少支?(生:6角相当于鸡的两条腿,8角相当于兔的四条腿,7支相当于鸡兔 的总头数,5元相当于推的总条数;)

  2、在活动安排中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

  学校准备开展一次象棋和跳棋的比赛,象棋和跳棋学校共有31副,恰好可让150个学生同时进行比赛,象棋2人一副、跳棋6人一副,象棋和跳棋各有多少副?

  (生:31副相当于鸡兔的总头数;150人相当于鸡兔的总推数;2人一副相当于鸡的两条腿;6人一副相当于兔的四条腿。

  (二)实践应用拓展,解决实际问题

  3、运输中的鸡兔同笼问题

  地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?

  尝试运用你喜欢的方法独立完成此题

  学生汇报:

  你采用的是那种列表方法?

  为什么要选用这种列表方法?

  谁有不同的列表方法?

  1)、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。

  就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)

  哪种方法解决最好?

  2)、(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?

  过渡语:老师相信同学们一定会耐心细致的做每一件事请。

  六、总结全课交流收获(3分)

  生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗?

  结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

  小学数学鸡兔同笼教学设计 篇2

  教学过程:  一、游戏体验

  师:这节课我们来做个鸡兔同笼的游戏好吗?

  师:谁来介绍鸡和兔的特征?

  生1:鸡一个头,两条腿

  生2:兔一个头,四条腿

  师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?

  (学生游戏,体验鸡兔同笼)

  二、建立模型

  师:谁来说说你们刚才是怎样数出有多少只脚的?

  生:用鸡数乘以2,用兔数乘以4。

  板书:鸡数2+兔数4

  师:通过刚才的游戏你有什么发现?

  生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

  师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

  (小组讨论)

  师;可以用什么办法把你们刚才猜测的过程记录下来。

  生发言:可以用画图或制成统计表的方法。

  师:今天我们主要来学习用统计表的`方法解决鸡兔同笼的问题。

  师:谁来说说,统计表中每栏要表示什么?

  师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

  (小组活动)

  师:谁来说说你是怎样记录的?

  反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)

  师:谁来说说三种方法哪种更快捷?

  生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

  师:如何调整?

  生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

  板书:猜测列举调整

  三、巩固提升

  师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

  1、一只蜘蛛8条腿,一只蜻蜓6条腿 ,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?

  2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?

  四、思想教育与总结

  师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

  五、教学反思

  对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意。

  我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

  就本堂课而言,还存在以下问题;

  1 、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

  2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

  3 、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

  4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

  小学数学鸡兔同笼教学设计 篇3

  教学目标:

  1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。

  2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。

  3、运用学到的解题策略——列表解决生活中的实际问题。

  4、培养学生分析问题的能力,渗透假设的数学思想。

  教学重点

  让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

  教学难点

  运用学到的解题策略解决生活中的实际问题。

  教学过程:

  一、情境引入,激发兴趣

  今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

  谁来读一读,你见过这类题吗?

  今天我们就来研究这类问题(板书鸡兔同笼)

  二、探索问题

  1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

  从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)

  现在同学们就来猜一猜鸡、兔各有多少只?

  把你猜想的结果跟你的同桌同学交流交流。

  学生交流后:请学生汇报猜想的情况

  教师随机板书

  看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么

  生:可以按照一定的顺序把他们排列起来看就很清楚

  师:对,按照一定的顺序把他们排列在表格里那会看得更清楚

  那么列表先做什么

  生:(1)画表

  (2)填写第一行

  师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。

  出示学习要求

  1、先独立尝试猜测

  2、把尝试的数据在表格中表达出来

  3、在小组内交流自己的想法

  生:尝试列表

  展示学生的表格请学生说一说是怎样做的

  师:一共尝试了几次

  生:13次,尝试出了这道题的答案

  师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么

  生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。

  师:给这种列表法起个名字

  生:起名字

  师:在数学上也有一个名字逐一列表

  师:观察这张表格,你有什么发现

  生:一一列出,肯定能找出答案,但有些麻烦

  师:那还有什么列表方法

  展示学生第二种列表方法出示表格

  生:说这种列表的方法

  师:观察这个表格,你又发现了什么

  生:这种列表,先几个几个的数,再逐渐调整

  师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表

  展示学生第三种列表方法出示表格

  生:说这种列表的方法

  师:观察这个表格,你又发现了什么

  生:这种列表,先假设鸡兔各占一半,再调整

  师:这种列表有直接特点,我们称这种列表方法为取中列表

  想一想,为什么用列表法解决这个问题

  生:简单,能准确计算结果

  师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么

  生:列表

  师:首先根据信息尝试猜测,再计算验证,最后合理调整。

  师:还可以用什么方法计算

  生:计算

  师:想知道古人是怎样解决这道题吗

  课件出示资料

  师:看了这个资料你想说什么

  三、实践运用,巩固深化

  1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?

  2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?

  3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?

  四、总结

  通过这堂课的学习你学会了什么?

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除